Patents by Inventor Lars H. Thylen

Lars H. Thylen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9013784
    Abstract: A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 21, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lars H. Thylen, Alexandre M. Bratkovski, Petter Holmstrom
  • Patent number: 8837544
    Abstract: A quantum device includes a resonator and a tuning structure. The tuning structure is made a material such as a chalcogenide and is positioned to interact with the electromagnetic radiation in the resonator so that a resonant mode of the first resonator depends on a characteristic of the tuning structure. The resonator is optically coupled so that a transition between quantum states associated with a defect produces electromagnetic radiation in the resonator. The characteristic of the tuning structure is adjustable after fabrication of the resonator and the tuning structure.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: September 16, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Charles M. Santori, Andrei Faraon, Kai-Mei Fu, Victor M. Acosta, Zhihong Huang, Lars H. Thylen, Raymond G. Beausoleil
  • Publication number: 20130215495
    Abstract: A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 22, 2013
    Inventors: Lars H. Thylen, Alexandre M. Bratkovski, Petter Holmstrom
  • Publication number: 20130107352
    Abstract: A quantum device includes a resonator and a tuning structure. The tuning structure is made a material such as a chalcogenide and is positioned to interact with the electromagnetic radiation in the resonator so that a resonant mode of the first resonator depends on a characteristic of the tuning structure. The resonator is optically coupled so that a transition between quantum states associated with a defect produces electromagnetic radiation in the resonator. The characteristic of the tuning structure is adjustable after fabrication of the resonator and the tuning structure.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Inventors: Charles M. Santori, Andrei Faraon, Kai-Mei Fu, Victor M. Acosta, Zhihong Huang, Lars H. Thylen, Raymond G. Beausoleil
  • Publication number: 20110081109
    Abstract: A nanoparticle array photonic waveguide, a photonic transmission system and a method of photonic transmission compensate for optical loss in an optical signal through stimulated emission using an optical gain material in a core of composite nanoparticles. The nanoparticle array photonic waveguide includes a plurality of the composite nanoparticles arranged adjacent to one another in a row. A composite nanoparticle of the plurality includes a shell and a core. The shell includes a negative dielectric constant material that is capable of supporting an optical signal on a surface of the shell. The core is adjacent to a side of the shell opposite to the shell surface. The core includes an optical gain material (OGM) that is capable of providing optical gain to the optical signal through stimulated emission within the OGM.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventors: Lars H. Thylen, Alexandre M. Bratkovski
  • Patent number: 5367274
    Abstract: A quantum wave guiding electronic switch includes a substrate which carries electron waveguides disposed in a fork-like configuration. Each of these electron waveguides is connected to a respective electron reservoir. Electrons are driven through the waveguides by voltage sources. Electrodes on the substrate generate an electric field which passes through the outgoing electron waveguides of the switch, and creates a potential difference therebetween. In one case, in which the electrons are transported ballistically, in the absence of electron scattering, this potential difference creates a phase mismatch between the outputs. An incident electron wave function having even parity is herewith switched to a quasi even electron wave function in the output that has the lowest energetic potential. When transportation is not ballistic and the electrons scattered to some extent, switching is effected by relaxation of incoming electrons to lower energy levels.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: November 22, 1994
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Lars H. Thylen
  • Patent number: 5140657
    Abstract: A device for optically coupling an optical fiber (1) forming part of an optical communication system, to an optical semiconductor laser amplifier (4) having an input facet (5) and an output facet (7). The optical fiber has an end surface (2) arranged opposite to at least one of the facets. A characteristic feature of the invention is an diffraction optics element (11) arranged between the end surface of the fiber and the surface of the facet in order to adapt the nearfield of the fiber end to the nearfield of the facet surface and for providing optical filtering reducing spontaneous emission noise. Preferably the diffraction optics element is a phase hologram.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: August 18, 1992
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Lars H. Thylen
  • Patent number: 4993798
    Abstract: A laser arrangement in an optical communication system has a semiconductor laser (1) which includes an optical waveguide (4) whose end surface (5,8) have reflection-inhibiting coatings. The end surfaces (5, 8) are connected to a respective first connection (7, 10) of a first (2) and a second (3) directional coupler switch. Each of the directional coupler switches (2,3) have a second connection (13, 14), which is provided with mirrors (15, 16), and a third connection (11,12), which is connected to a respective optical fiber (17, 18) in the communication system. In a receiving and amplifying state, an incoming light signal (P1) is coupled by the first coupler switch (2) to the laser diode (1), where the signal is amplified by a drive current (I) and detected (24). The amplified signal (P2) is coupled to the outgoing fiber (18) by the second coupler switch (3).
    Type: Grant
    Filed: August 31, 1989
    Date of Patent: February 19, 1991
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Lars H. Thylen
  • Patent number: 4759627
    Abstract: The invention relates to a fibre-optic Mach-Zehnder Interferometer for measuring such as change in length. Two light conducting fibres (1,2) are connected to a coherent light source (5). A measurement converter (6), actuated by a measurement quantity (P) changes the length of the optical path and thereby the phase angle for the light wave in one fibre (2). The phase angles for the light waves in the fibres (1, 2) are compared and a corresponding output signal (I) is fed back to compensate for the phase angle change in the measurement converter (6). To make the comparison result (I) independent of the light intensities in the light conducting fibres (1,2) these are connected to an opto-electronic directional coupler (7). This is selected such that the output signal (I) varies as the phase displacement .phi., according to the relationship: I=2.times.A.times.B.times.sin .phi., where A and B are the amplitudes of the light waves in the fibres (1,2).
    Type: Grant
    Filed: March 5, 1986
    Date of Patent: July 26, 1988
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventors: Lars H. Thylen, Per-Ola Andersson, Sven A. R. Persson
  • Patent number: 4742307
    Abstract: The invention relates to an optical amplification device (10) with noise filter function. A body, composed of a plurality of layers (11-15) of different materials has electrodes (16) on its opposing sides. A first (12) and a second (14) of these layers is light wave conductive and forms a directional coupler with an interaction length (2L) consisting of two coupling lengths. The other (14) of the light wave conductive layers is a travelling wave amplifier which is pumped by an electric current (I) between the electrodes (16). The dispersion of the light wave conductors varies according to different relationships, and the effective refractive index has a common value (N.sub.eff0) for the wavelength intended for amplification. A light signal (I.sub.s, I.sub.b) in the first waveguide (12) migrates transversely over to the second waveguide (14), where it is amplified and migrates back again to the first waveguide (12). At the same time there is noise filtration of the signal (I.sub.s, I.sub.
    Type: Grant
    Filed: September 9, 1986
    Date of Patent: May 3, 1988
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Lars H. Thylen
  • Patent number: 4658224
    Abstract: A method of increasing the available bandwidth of a high speed modulator in which an optical signal is modulated by a microwave signal (v) along an interaction distance (L). After passing half the interaction distance (L/2) the modulating signal is pole reversed by a positive (+E) and a negative (-E) bias voltage being connected to two different sections of the interaction distance. An apparatus according the method in an optical directional coupler modulator is described.
    Type: Grant
    Filed: September 21, 1984
    Date of Patent: April 14, 1987
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Lars H. Thylen, Anders G. Djupsjobacka
  • Patent number: 4457579
    Abstract: An arrangement for reducing influence of diffuse and direct reflections in a display device based on a light source emitting in a narrow band said display device comprising an absorption filter (25) having a pass band enclosing the center frequency of the light source (11) said absorption filter being placed in the beam path between the light source (11) and the observer (14) and immediately adjacent reflecting means (24), the bandwidth of the filter (25) being wider than the bandwidth of the light source (11), but considerably narrower than the spectral bandwidth of the eye.
    Type: Grant
    Filed: April 15, 1980
    Date of Patent: July 3, 1984
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Lars H. Thylen