Patents by Inventor Lars Liebmann

Lars Liebmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11665878
    Abstract: A static random access memory (SRAM) structure is provided. The structure includes a plurality of SRAM bit cells on a substrate. Each SRAM bit cell includes at least six transistors including at least two NMOS transistors and at least two PMOS transistors. Each of the at least six transistors being lateral transistors with channels formed from nano-sheets grown by epitaxy. The at least six transistors positioned in two decks in which a second deck is positioned vertically above a first deck relative to a working surface of the substrate, wherein at least one NMOS transistor and at least one PMOS transistor share a common vertical gate. A first inverter formed using a first transistor positioned in the first deck and a second transistor positioned in the second deck. A second inverter formed using a third transistor positioned in the first deck and a fourth transistor positioned in the second deck. A pass gate is located in either the first deck or the second deck.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: May 30, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith
  • Patent number: 11646318
    Abstract: In vertically stacked device structures, a buried interconnect and bottom contacts can be formed, thereby allowing connections to be made to device terminals from both below and above the stacked device structures. Techniques herein include a structure that enables electrical access to each independent device terminal of multiple devices, stacked on top of each other, without interfering with other devices and the local connections that are needed.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: May 9, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith
  • Patent number: 11631671
    Abstract: A method of fabricating a semiconductor device is provided. An initial stack of layers is formed over a substrate. The initial stack alternates between a first material layer and a second material layer that has a different composition from the first material layer. The initial stack is divided into a first stack and a second stack. First GAA transistors are formed in the first stack by using the first material layers as respective channel regions for the first GAA transistors and using the second material layers as respective replacement gates for the first GAA transistors. Second GAA transistors are formed in the second stack by using the second material layers as respective channel regions for the second GAA transistors and using the first material layers as respective replacement gates for the second GAA transistors. The second GAA transistors are vertically offset from the first GAA transistors.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: April 18, 2023
    Assignee: Tokyo Electron Limited
    Inventors: H. Jim Fulford, Anton J. Devilliers, Mark I. Gardner, Daniel Chanemougame, Jeffrey Smith, Lars Liebmann, Subhadeep Kal
  • Publication number: 20230100332
    Abstract: A semiconductor device includes a first field-effect transistor positioned over a substrate, a second field-effect transistor stacked over the first field-effect transistor, a third field-effect transistor stacked over the second field-effect transistor, and a fourth field-effect transistor stacked over the third field-effect transistor. A bottom gate structure is disposed around a first channel structure of the first field-effect transistor and positioned over the substrate. An intermediate gate structure is disposed over the bottom gate structure and around a second channel structure of the second field-effect transistor and a third channel structure of the third field-effect transistor. A top gate structure is disposed over the intermediate gate structure and around a fourth channel structure of the fourth field-effect transistor.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Lars LIEBMANN, Jeffrey SMITH, Daniel CHANEMOUGAME, Paul GUTWIN
  • Patent number: 11616020
    Abstract: A semiconductor device includes a transistor stack. The transistor stack has a plurality of transistors that are stacked over a substrate. Each of the plurality of transistors includes a channel region stacked over the substrate and extending in a direction parallel to the substrate, a gate structure stacked over the substrate and surrounding the channel region of each of the plurality of transistors, and source/drain (S/D) regions stacked over the substrate and further positioned at two ends of the channel region of each of the plurality of transistors. The semiconductor device also includes one or more conductive planes formed over the substrate. The one or more conductive planes are positioned adjacent to the transistor stack, span a height of the transistor stack, and are electrically coupled to the transistor stack.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: March 28, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Anton J. deVilliers, Kandabara Tapily
  • Publication number: 20230078381
    Abstract: Aspects of the present disclosure provide a semiconductor structure. For example, the semiconductor structure can include a lower channel structure, an upper channel structure formed vertically over the lower channel, a first transistor device including lower and upper gates formed around a first portion of the lower and upper channel structures, respectively, and a separation layer formed between and separating the lower and upper gates, and a second transistor device including a common gate formed around a second portion of the lower and upper channel structures. The first portion of the lower channel structure is equal to the first portion of the upper channel structure in width, and has a first width less than a second width of the second portion of the lower channel structure.
    Type: Application
    Filed: August 5, 2022
    Publication date: March 16, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Lars LIEBMANN, Jeffrey SMITH, Daniel CHANEMOUGAME, Paul GUTWIN
  • Patent number: 11581242
    Abstract: A microfabrication device is provided. The microfabrication device includes a combined substrate including a first substrate connected to a second substrate, the first substrate having first devices and the second substrate having second devices; fluidic passages formed at a connection point between the first substrate and the second substrate, the connection point including a wiring structure that electrically connects first devices to second devices and physically connects the first substrate to the second substrate; dielectric fluid added to the fluidic passages; and a circulating mechanism configured to circulate the dielectric fluid through the fluidic passages to transfer heat.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: February 14, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith, Paul Gutwin
  • Patent number: 11574845
    Abstract: A method of manufacturing a 3D semiconductor device, the method including forming a first target structure, the first target structure including at least one upper gate, at least one bottom gate, and a dielectric separation layer disposed between and separating the at least one upper gate and the at least one bottom gate; removing material in a plurality of material removal areas in the first target structure, the plurality of material removal areas including at least one material removal area that extends through the at least one upper gate to a top of the dielectric separation layer; and forming a first contact establishing a first electrical connection to the upper gate and a second contact establishing a second electrical connection to the at least one bottom gate, such that the first contact and second contact are independent of each other.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: February 7, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith, Anton deVilliers
  • Publication number: 20230036597
    Abstract: Aspects of the present disclosure provide a self-aligned microfabrication method, which can include providing a substrate having vertically arranged first and second channel structures, forming first and second sacrificial contacts to cover ends of the first and second channel structures, respectively, covering the first and second sacrificial contacts with a fill material, recessing the fill material such that the second sacrificial contact is at least partially uncovered while the first sacrificial contact remains covered, replacing the second sacrificial contact with a cover spacer, removing a remaining portion of the first fill material, uncovering the end of the first channel structure, forming a first source/drain (S/D) contact to cover the end of the first channel structure, covering the first S/D contact with a second fill material, uncovering the end of the second channel structure, and forming a second S/D contact at the end of the second channel structure.
    Type: Application
    Filed: August 1, 2022
    Publication date: February 2, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, Daniel CHANEMOUGAME, Lars LIEBMANN, Paul GUTWIN, Subhadeep KAL, Kandabara TAPILY, Anton DEVILLIERS
  • Publication number: 20230024975
    Abstract: A method for forming a semiconductor apparatus includes forming a plurality of repetitive initial structures over a substrate of the semiconductor apparatus. An initial structure in the plurality of repetitive initial structures is formed by forming a first stack of transistors along a Z direction substantially perpendicular to a substrate plane, and forming local interconnect structures. Each of the transistors in the first stack of transistors is sandwiched between two of the local interconnect structures. Vertical conductive structures are formed substantially parallel to the Z direction, a height of one of the vertical conductive structures along the Z direction being at least a height of the initial structure. The initial structure is functionalized into a final structure by forming one or more connections each electrically coupling one of the local interconnect structures to one of the vertical conductive structures.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 26, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Anton deVilliers
  • Publication number: 20230017350
    Abstract: Aspects of the present disclosure provide a method of manufacturing a three-dimensional (3D) semiconductor device. For example, the method can include forming a target structure, the target structure including a lower gate region, an upper gate region, and a separation layer disposed between and separating the lower gate region and the upper gate region. The method can also include forming a sacrificial contact structure extending vertically from the bottom gate region through the separation layer and the upper gate region to a position above the upper gate region, removing at least a portion of the sacrificial contact structure resulting in a lower gate contact opening extending from the position above the upper gate region to the bottom gate region, insulating a side wall surface of the lower gate contact opening, and filling the lower gate contact opening with a conductor to form a lower gate contact.
    Type: Application
    Filed: June 9, 2022
    Publication date: January 19, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Daniel CHANEMOUGAME, Lars LIEBMANN, Jeffrey SMITH, Paul GUTWIN
  • Patent number: 11550985
    Abstract: In an embodiment, a method includes: receiving data representative of an electrical circuit including an arrangement of devices, inputs, outputs, and power sources; pairing the devices based on a complimentary feature shared between the devices, the complimentary feature being associated to an operational characteristic of the devices; grouping the paired devices into device clusters based on common features shared between two or more of the paired devices; arranging the device clusters based on locations of input, outputs, or power connections of the device clusters to optimize electrical isolation or electrical connections between the device clusters; and generating discrete portions of the arranged device clusters to form a physical layout representative of a physical manifestation of the electrical circuit, such that when the discrete portions are integrated together they form a physical manifestation of the electrical circuit.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 10, 2023
    Assignee: Tokyo Electron Limited
    Inventor: Lars Liebmann
  • Patent number: 11545497
    Abstract: A static random access memory (SRAM) structure is provided. The structure includes a plurality of SRAM bit cells on a substrate. Each SRAM bit cell includes at least six transistors including at least two NMOS transistors and at least two PMOS transistors. Each of the six transistors is being lateral gate-all-around transistors in that gates wraps all around a cross section of channels of the at least six transistors. The at least six transistors positioned in three decks in which a third deck is positioned vertically above a second deck, and the second deck is positioned vertically above a first deck relative to a working surface of the substrate. A first inverter is formed using a first transistor positioned in the first deck and a second transistor positioned in the second deck. A second inverter is formed using a third transistor positioned in the first deck and a fourth transistor positioned in the second deck. A pass gate is located in the third deck.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: January 3, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith
  • Publication number: 20220416048
    Abstract: Aspects of the present disclosure provide a method, which includes providing a semiconductor structure including a first lower semiconductor device and a first upper semiconductor device stacked vertically over the first lower semiconductor device. The first lower semiconductor device has one or more first lower channels. The first upper semiconductor device has one or more first upper channels. First work function metal (WFM) can cover the first lower channels and the first upper channels. The method can also include recessing the first WFM to uncover the first upper channels of the first upper semiconductor device, depositing a monolayer on uncovered dielectric surfaces of the semiconductor structure, depositing isolation dielectric on the first WFM of the first lower semiconductor device, and depositing second WFM to cover the first upper channels of the first upper semiconductor device. The isolation dielectric isolates the first lower semiconductor device from the first upper semiconductor device.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 29, 2022
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, Lars LIEBMANN, Daniel CHANEMOUGAME, Paul GUTWIN, Kandabara TAPILY, Subhadeep KAL, Robert CLARK
  • Patent number: 11532708
    Abstract: A semiconductor device includes a first field-effect transistor positioned over a substrate, a second field-effect transistor stacked over the first field-effect transistor, a third field-effect transistor stacked over the second field-effect transistor, and a fourth field-effect transistor stacked over the third field-effect transistor. A bottom gate structure is disposed around a first channel structure of the first field-effect transistor and positioned over the substrate. An intermediate gate structure is disposed over the bottom gate structure and around a second channel structure of the second field-effect transistor and a third channel structure of the third field-effect transistor. A top gate structure is disposed over the intermediate gate structure and around a fourth channel structure of the fourth field-effect transistor.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: December 20, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Paul Gutwin
  • Publication number: 20220375921
    Abstract: An integrated circuit includes an array of unit cells, each unit cell of which including field effect transistors arranged in a stack. Local interconnect structures form select conductive paths between select terminals of the field effect transistors to define cell circuitry that is confined within each unit cell. An array of contacts is disposed on an accessible surface of the unit cell, where each contact is electrically coupled to a corresponding electrical node of the cell circuitry.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Applicant: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Anton deVilliers
  • Publication number: 20220367461
    Abstract: Aspects of the present disclosure provide a multi-tier semiconductor structure. For example, the semiconductor structure can include a lower semiconductor device tier including lower semiconductor devices, an upper semiconductor device tier disposed over the lower semiconductor device tier and including upper semiconductor devices, a separation layer disposed between and separating the lower and upper semiconductor device tiers, a wiring tier disposed below the lower semiconductor device tier, a lower gate contact extending from a lower gate region of the lower semiconductor device tier downward to the wiring tier, an upper gate contact extending from an upper gate region of the upper semiconductor device tier downward through the separation layer to the wiring tier, and an isolator covering a lateral surface of the upper gate contact and electrically isolating the upper and lower gate contacts. The lower gate contact and the upper gate contact can be independent from each other.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 17, 2022
    Applicant: Tokyo Electron Limited
    Inventors: Daniel CHANEMOUGAME, Lars LIEBMANN, Jeffrey SMITH, Paul GUTWIN
  • Patent number: 11495540
    Abstract: Aspects of the disclosure provide a semiconductor apparatus including a plurality of structures. A first one of the structures comprises a first stack of transistors that includes a first transistor formed on a substrate and a second transistor stacked on the first transistor along a Z direction substantially perpendicular to a substrate plane of the semiconductor apparatus. The first one of the structures further includes local interconnect structures. The first transistor is sandwiched between two of the local interconnect structures. The first one of the structures further includes vertical conductive structures substantially parallel to the Z direction. The vertical conductive structures are configured to provide at least power supplies for the first one of the structures by electrically coupling with the local interconnect structures. A height of one of the vertical conductive structures along the Z direction is at least a height of the first one of the structures.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: November 8, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Anton deVilliers
  • Patent number: 11488947
    Abstract: An integrated circuit includes an array of unit cells, each unit cell of which including field effect transistors arranged in a stack. Local interconnect structures form select conductive paths between select terminals of the field effect transistors to define cell circuitry that is confined within each unit cell. An array of contacts is disposed on an accessible surface of the unit cell, where each contact is electrically coupled to a corresponding electrical node of the cell circuitry.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: November 1, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Anton deVilliers
  • Patent number: 11469146
    Abstract: In a self-aligned fin cut process for fabricating integrated circuits, a sacrificial gate or an epitaxially-formed source/drain region is used as an etch mask in conjunction with a fin cut etch step to remove unwanted portions of the fins. The process eliminates use of a lithographically-defined etch mask to cut the fins, which enables precise and accurate alignment of the fin cut.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: October 11, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Lei L. Zhuang, Balasubramanian Pranatharthiharan, Lars Liebmann, Ruilong Xie, Terence Hook