Patents by Inventor Latika Menon

Latika Menon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10702833
    Abstract: Provided in one embodiment is filtering article, comprising: powders comprising bundles of nanotubes, each bundle comprising hollow titania nanotubes. Embodiments of the methods of making and using the filtering articles are also provided.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: July 7, 2020
    Assignee: Northeastern University
    Inventors: Eugen Panaitescu, Latika Menon
  • Publication number: 20190201853
    Abstract: Provided in one embodiment is filtering article, comprising: powders comprising bundles of nanotubes, each bundle comprising hollow titania nanotubes. Embodiments of the methods of making and using the filtering articles are also provided.
    Type: Application
    Filed: October 19, 2018
    Publication date: July 4, 2019
    Inventors: Eugen Panaitescu, Latika Menon
  • Patent number: 10130917
    Abstract: Provided in one embodiment is a filtering article, comprising: powders comprising bundles of nanotubes, each bundle comprising hollow titania nanotubes. Embodiments of the methods of making and using the filtering articles are also provided.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 20, 2018
    Assignee: Northeastern University
    Inventors: Eugen Panaitescu, Latika Menon
  • Publication number: 20150380584
    Abstract: A solar cell includes a plurality of nanostructures. The nanostructures include a first metal oxide, each of the plurality of the nanostructures having a surface defining a cavity opening into an upper side. The solar cell further includes a layer of a second metal oxide disposed over the surface in at least some of the plurality of the nanostructures and a filler material disposed over the layer and filling at least partially the cavity of at least some of the plurality of the nano structures.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 31, 2015
    Inventors: Christiaan Richter, Latika Menon, Eugen Panaitescu
  • Publication number: 20150367289
    Abstract: Provided in one embodiment is a filtering article, comprising: powders comprising bundles of nanotubes, each bundle comprising hollow titania nanotubes. Embodiments of the methods of making and using the filtering articles are also provided.
    Type: Application
    Filed: February 4, 2014
    Publication date: December 24, 2015
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Eugen Panaitescu, Latika Menon
  • Patent number: 8790502
    Abstract: A method of preparing titania nanotubes involves anodization of titanium in the presence of chloride ions and at low pH (1-7) in the absence of fluoride. The method leads to rapid production of titania nanotubes of about 25 nm diameter and high aspect ratio. The nanotubes can be organized into bundles and tightly packed parallel arrays. Inclusion of organic acids in the electrolyte solution leads to the incorporation into the nanotubes of up to 50 atom percent of carbon. In a two-stage method, a titanium anode is pre-patterned using a fluoride ion containing electrolyte and subsequently anodized in a chloride ion containing electrolyte to provide more evenly distributed nanotube arrays. The titania nanotubes have uses in composite materials, solar cells, hydrogen production, and as hydrogen sensors.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: July 29, 2014
    Assignee: Northeastern University
    Inventors: Christiaan Richter, Latika Menon, Ronald J. Willey
  • Publication number: 20120027681
    Abstract: Low-aspect ratio nanostructures, such as nanocups, nanorings, and arrays of nanocups and nanorings, methods of fabrication of nanostructures, and methods of using nanostructures are disclosed.
    Type: Application
    Filed: March 11, 2010
    Publication date: February 2, 2012
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Yung Joon Jung, Hyunkyung Chun, Latika Menon
  • Publication number: 20100024879
    Abstract: A method of preparing titania nanotubes involves anodization of titanium in the presence of chloride ions and at low pH (1-7) in the absence of fluoride. The method leads to rapid production of titania nanotubes of about 25 nm diameter and high aspect ratio. The nanotubes can be organized into bundles and tightly packed parallel arrays. Inclusion of organic acids in the electrolyte solution leads to the incorporation into the nanotubes of up to 50 atom percent of carbon. In a two-stage method, a titanium anode is pre-patterned using a fluoride ion containing electrolyte and subsequently anodized in a chloride ion containing electrolyte to provide more evenly distributed nanotube arrays. The titania nanotubes have uses in composite materials, solar cells, hydrogen production, and as hydrogen sensors.
    Type: Application
    Filed: February 21, 2008
    Publication date: February 4, 2010
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Christiaan Richter, Latika Menon, Ronald J. Willey