Patents by Inventor Laura C. Boudreau

Laura C. Boudreau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7527775
    Abstract: A process and method for separating CO2 from a gaseous stream such as natural gas. An ionic liquid comprising an anion having a carboxylate function and an effective amount of water is used as an adsorbent to selectively complex the CO2 yielding a gaseous stream with a greatly reduced CO2 content. The ionic liquid can then be readily be regenerated and recycled.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: May 5, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Daniel Chinn, De Q. Vu, Michael S. Driver, Laura C. Boudreau
  • Patent number: 6849774
    Abstract: Methods for separating di-olefins from mono-olefins, and olefins from non-olefins such as paraffins, oxygenates and aromatics; are provided. The methods use metal salts which complex both mono-olefins and di-olefins, but which selectively complex di-olefins in the presence of mono-olefins. The metal salts are dissolved or suspended in ionic liquids, which tend to have virtually no vapor pressure. Preferred salts are Group IB salts, more preferably silver and copper salts. A preferred silver salt is silver tetrafluoroborate. A preferred copper salt is silver CuOTf. Preferred ionic liquids are those which form stable solutions, suspensions or dispersions of the metal salts, which do not dissolve unwanted non-olefins, and which do not isomerize the mono- or di-olefins. The equivalents of the metal salt can be adjusted so that di-olefins are selectively adsorbed from mixtures of mono- and di-olefins. Alternatively, both mono- and di-olefins can be adsorbed, and the mono-olefins selectively desorbed.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: February 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Laura C. Boudreau, Michael S. Driver, Curt L. Munson, William L. Schinski
  • Patent number: 6623659
    Abstract: Methods for separating olefins from non-olefins, such as paraffins, including cycloparaffins, oxygenates and aromatics, are provided. The methods use metal salts to complex olefins, allowing the non-olefins to be separated by a variety of methods, including decantation and distillation. The metal salts are dissolved in ionic liquids, which tend to have virtually no vapor pressure, and which poorly solubilize the non-olefins. Accordingly, the non-olefins phase separate well, and can be distilled without carrying over any of the ionic liquid into the distillate. Preferred salts are Group IB salts, more preferably silver salts. A preferred silver salt is silver tetrafluoroborate. Preferred ionic liquids are those which form stable solutions or dispersions of the metal salts, and which do not dissolve the non-olefins. Further, if the olefins are subject to isomerization, the ionic liquid is preferably relatively non-acidic.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: September 23, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Curtis L. Munson, Laura C. Boudreau, Michael S. Driver, William L. Schinski
  • Publication number: 20030125599
    Abstract: Methods for separating di-olefins from mono-olefins, and olefins from non-olefins such as paraffins, oxygenates and aromatics; are provided. The methods use metal salts which complex both mono-olefins and di-olefins, but which selectively complex di-olefins in the presence of mono-olefins. The metal salts are dissolved or suspended in ionic liquids, which tend to have virtually no vapor pressure. Preferred salts are Group IB salts, more preferably silver and copper salts. A preferred silver salt is silver tetrafluoroborate. A preferred copper salt is silver CuOTf. Preferred ionic liquids are those which form stable solutions, suspensions or dispersions of the metal salts, which do not dissolve unwanted non-olefins, and which do not isomerize the mono- or di-olefins. The equivalents of the metal salt can be adjusted so that di-olefins are selectively adsorbed from mixtures of mono- and di-olefins. Alternatively, both mono- and di-olefins can be adsorbed, and the mono-olefins selectively desorbed.
    Type: Application
    Filed: December 31, 2001
    Publication date: July 3, 2003
    Inventors: Laura C. Boudreau, Michael S. Driver, Curt L. Munson, William L. Schinski
  • Publication number: 20020063240
    Abstract: Methods for separating olefins from non-olefins, such as paraffins, including cycloparaffins, oxygenates and aromatics, are provided. The methods use metal salts to complex olefins, allowing the non-olefins to be separated by a variety of methods, including decantation and distillation. The metal salts are dissolved in ionic liquids, which tend to have virtually no vapor pressure, and which poorly solubilize the non-olefins. Accordingly, the non-olefins phase separate well, and can be distilled without carrying over any of the ionic liquid into the distillate. Preferred salts are Group IB salts, more preferably silver salts. A preferred silver salt is silver tetrafluoroborate. Preferred ionic liquids are those which form stable solutions or dispersions of the metal salts, and which do not dissolve the non-olefins. Further, if the olefins are subject to isomerization, the ionic liquid is preferably relatively non-acidic.
    Type: Application
    Filed: December 3, 2001
    Publication date: May 30, 2002
    Inventors: Curtis L. Munson, Laura C. Boudreau, Michael S. Driver, William L. Schinski
  • Patent number: 6339182
    Abstract: Methods for separating olefins from non-olefins, such as parafins, including cycloparaffins, oxygenates and aromatics, are provided. The methods use metal salts to complex olefins, allowing the non-olefins to be separated by a variety of methods, including decantation and distillation. The metal salts are dissolved in ionic liquids, which tend to have virtually no vapor pressure, and which poorly solubilize the non-olefins. Accordingly, the non-olefins phase separate well, and can be distilled without carrying over any of the ionic liquid into the distillate. Preferred salts are Group IB salts, more preferably silver salts. A preferred silver salt is silver tetrafluoroborate. Preferred ionic liquids are those which form stable solutions or dispersions of the metal salts, and which do not dissolve the non-olefins. Further, if the olefins are subject to isomerization, the ionic liquid is preferably relatively non-acidic.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: January 15, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Curtis L. Munson, Laura C. Boudreau, Michael S. Driver, William L. Schinski