Patents by Inventor Laurene Tetard

Laurene Tetard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101427
    Abstract: This disclosure relates to a method of producing and patterning of well-defined nanoscale and microscale carbon structures with light using a defect-engineered photocatalyst.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 28, 2024
    Inventors: Laurene Tetard, Richard Blair
  • Publication number: 20230417795
    Abstract: This disclosure relates to an method for the nanoscale creation of functional defects in 2D materials with the ability to control their dimensions and compositions.
    Type: Application
    Filed: June 14, 2023
    Publication date: December 28, 2023
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventor: Laurene Tetard
  • Publication number: 20230010709
    Abstract: The inventive concepts disclosed relate to the production of green and blue hydrogen from hydrocarbons using visible light (from a laser, lamp or sun) and defect-engineered boron-rich photocatalysts. We demonstrate that the environment of the B atoms in the lattice can be tuned to favor the dehydrogenation of desired hydrocarbons on reaction sites under visible light. In addition to the hydrogen produced in gas form, carbon atoms are captured by the catalyst and form structures of potential higher value for future applications. Further study of the dark carbonaceous product revealed a graphitic aspect of the material. These findings highlight a new functionality of 2D materials for visible light-assisted capture and conversion of hydrocarbons, with great potential for green hydrogen production ? i.e, hydrogen produced from renewable energy and without the release of CO or CO2.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Inventors: Laurene TETARD, Richard BLAIR, Fernand E. TORRES-DAVILA, Katerina L. CHAGOYA
  • Publication number: 20230011182
    Abstract: The inventive concepts disclosed relate to the production of green and blue hydrogen from hydrocarbons using visible light (from a laser, lamp or sun) and defect-engineered boron-rich photocatalysts. We demonstrate that the environment of the B atoms in the lattice can be tuned to favor the dehydrogenation of desired hydrocarbons on reaction sites under visible light. In addition to the hydrogen produced in gas form, carbon atoms are captured by the catalyst and form structures of potential higher value for future applications. Further study of the dark carbonaceous product revealed a graphitic aspect of the material. These findings highlight a new functionality of 2D materials for visible light-assisted capture and conversion of hydrocarbons, with great potential for green hydrogen production—i.e, hydrogen produced from renewable energy and without the release of CO or CO2.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Inventors: Laurene TETARD, Richard BLAIR
  • Patent number: 9472396
    Abstract: A plasma-based processing method includes depositing a transition metal dichalcogenide (TMDC) material onto a substrate. The TMDC material is plasma treated in an oxygen containing ambient to oxidize the TMDC material to form oxidized dielectric TMDC material. The oxidized dielectric TMDC material has a higher electrical resistivity as compared an electrical resistivity of the TMDC material before the plasma treating, typically >103 times greater.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 18, 2016
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Saiful Khondaker, Muhammad Islam, Laurene Tetard
  • Publication number: 20150294875
    Abstract: A plasma-based processing method includes depositing a transition metal dichalcogenide (TMDC) material onto a substrate. The TMDC material is plasma treated in an oxygen containing ambient to oxidize the TMDC material to form oxidized dielectric TMDC material. The oxidized dielectric TMDC material has a higher electrical resistivity as compared an electrical resistivity of the TMDC material before the plasma treating, typically >103 times greater.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 15, 2015
    Inventors: SAIFUL KHONDAKER, MUHAMMAD ISLAM, LAURENE TETARD
  • Patent number: 8789211
    Abstract: A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: July 22, 2014
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Ali Passian, Thomas George Thundat, Laurene Tetard
  • Publication number: 20140020141
    Abstract: A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
    Type: Application
    Filed: May 20, 2013
    Publication date: January 16, 2014
    Applicants: University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Ali Passian, Thomas George Thundat, Laurene Tetard
  • Patent number: 8448261
    Abstract: A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: May 21, 2013
    Assignees: University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Ali Passian, Thomas George Thundat, Laurene Tetard
  • Publication number: 20110231966
    Abstract: A method for determining chemical characteristics of a sample, the method including directly applying a first acoustic wave at a first frequency to a probe and applying, independent of the directly applying the first acoustic wave, a second acoustic wave at a second frequency to the sample, wherein the first frequency is different than the second frequency and the first acoustic wave and the second acoustic wave are simultaneously applied to the probe and the sample, respectively, and form a coupling. The method further including applying electromagnetic energy to the sample, wherein the electromagnetic energy is absorbed by the sample causing a change in phase of the second acoustic wave. The method further including detecting an effect of the coupling and determining a spectrum of the sample based on the detecting.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Inventors: Ali Passian, Laurene Tetard, Thomas George Thundat, Brian Henry Davison, Martin Keller
  • Publication number: 20110231965
    Abstract: A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Inventors: Ali Passian, Thomas George Thundat, Laurene Tetard