Patents by Inventor Laurent Joubaud

Laurent Joubaud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9656910
    Abstract: Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: May 23, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Brandon Allen Bazemore, Jeffrey Alan Decker, Jiangwei Feng, Diane Kimberlie Guilfoyle, Daniel Ralph Harvey, Yuhui Jin, Laurent Joubaud, Xavier Gerard Lafosse, Alexander Mikhailovich Streltsov, Ljerka Ukrainczyk
  • Patent number: 9611165
    Abstract: A method of bending a glass sheet includes placing the glass sheet on a support and heating the entire glass sheet to a first viscosity. A band of heat is applied and translated along the selected region of the glass sheet in which a predetermined is to be formed over a time period to form the predetermined in the selected region. The band of heat sectionally heats the selected region to a second viscosity that is lower than the first viscosity. An actuated force is applied to the glass sheet to incrementally form the predetermined bend in the selected region according to the location of the band of heat in the selected region.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 4, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Paul Louis Florent Delautre, Patrick Jean Pierre Herve, Laurent Joubaud
  • Patent number: 9580347
    Abstract: A glass forming system (200) and a method are described herein for forming a glass sheet (230). In one example, the glass forming system and method can use a glass composition with a liquidus viscosity less than 1000 poises to continuously form a glass sheet.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 28, 2017
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Allan Mark Fredholm, Laurent Joubaud
  • Publication number: 20160368805
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt from a molten core glass and at least one molten cladding glass. The multi-layer glass melt has a width Wm, a melt thickness Tm and a core to cladding thickness ratio Tc:Tcl. The multi-layer glass melt is directed onto the surface of a molten metal bath contained in a float tank. The width Wm of the multi-layer glass melt is less than the width Wf of the float tank prior to the multi-layer glass melt entering the float tank. The multi-layer glass melt flows over the surface of the molten metal bath such that the width Wm of the multi-layer glass melt increases, the melt thickness Tm decreases, and the core to cladding thickness ratio Tc:Tclremains constant as the multi-layer glass melt solidifies into a laminated glass sheet.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allen Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Patent number: 9458044
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt (300) from a molten core glass (106) and at least one molten cladding glass (126). The multi-layer glass melt (300) has a width Wm, a melt thickness Tm and a core to cladding thickness ratio TC:TCl. The multi-layer glass melt (300) is directed onto the surface of a molten metal bath (162) contained in a float tank (160). The width Wm of the multi-layer glass melt (300) is less than the width Wf of the float tank (160) prior to the multi-layer glass melt (300) entering the float tank (160). The multilayer glass melt (300) flows over the surface of the molten metal bath (162) such that the width Wm of the multi-layer glass melt (300) increases, the melt thickness Tm decreases, and the core to cladding thickness ratio TC:TCl remains constant as the multi-layer glass melt (300) solidifies into a laminated glass sheet. The invention also relates to the associated apparatus.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 4, 2016
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allan Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Publication number: 20160221859
    Abstract: The present disclosure provides an apparatus and method for modifying the shape of a hollow structure. The method may comprise steps of providing a hollow structure having a cross-section with first and second diameters defining a first aspect ratio; heating at least a part of the hollow structure to at least its glass transition temperature, forming a malleable hollow structure; maintaining a positive pressure inside the malleable hollow structure to form a pressurized hollow structure; and pressing against a first side and an opposed second side of a heated part of the pressurized hollow structure, forming a hollow tabular structure having first and second opposed generally flat faces and a second aspect ratio greater than the first aspect ratio.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 4, 2016
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dominique Dejean, Allan Mark Fredholm, Laurent Joubaud
  • Publication number: 20160152516
    Abstract: Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Brandon Allen Bazemore, Jeffrey Alan Decker, Jiangwei Feng, Diane Kimberlie Guilfoyle, Daniel Ralph Harvey, Yuhui Jin, Laurent Joubaud, Xavier Gerard Lafosse, Alexander Mikhailovich Streltsov, Ljerka Ukrainczyk
  • Publication number: 20160152503
    Abstract: A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Thierry Luc Alain Dannoux, Araund Dominique Dejean, Allan Mark Fredholm, Patrick Jean Pierre Herve, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Patent number: 9346706
    Abstract: Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 24, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Brandon A. Bazemore, Jeffrey A. Decker, Jiangwei Feng, Diane Kimberlie Guilfoyle, Daniel Ralph Harvey, Yuhui Jin, Laurent Joubaud, Xavier Lafosse, Alexander Mikhailovich Streltsov, Ljerka Ukrainczyk
  • Patent number: 9334187
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 10, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 9284212
    Abstract: A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 15, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Allan Mark Fredholm, Patrick Jean Pierre Herve, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Patent number: 9249041
    Abstract: A furnace for melting batch materials, including, upstream in the direction of flow of the molten materials, a zone for introducing solid batch materials, and including a submerged burner and an overhead surface burner providing a flame that touches the surface of the glass at the point where the bubble from the submerged burner emerges. This association of an overhead, especially roof-mounted, burner and a submerged burner reduces the quantity of batch stones that may be sent toward the downstream end of the furnace.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: February 2, 2016
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Laurent Pierrot, Frederic Lopepe, Biagio Palmieri, Laurent Joubaud, Philippe Pedeboscq, Philippe Meunier
  • Publication number: 20150232367
    Abstract: A bending apparatus or lehr for bending a structure, the bending apparatus having a movable shaping mold with a mold cloth disposed about portions of the movable shaping mold. The mold cloth can be replaced without reducing temperature in the bending apparatus or lehr and during normal operation of the bending apparatus or lehr.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 20, 2015
    Inventors: Laurent Joubaud, Stephane Poissy
  • Publication number: 20150232366
    Abstract: A mechanism for bending glass comprising a seating device and a mold configured to bend a substrate to a desired shape, the substrate adaptable to be provided on the seating device. A position of the mold in relation to the seating device can be controlled by a programmable counterweight system.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 20, 2015
    Inventors: Michele Fredholm, Laurent Joubaud, Stephane Poissy
  • Publication number: 20150191387
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt (300) from a molten core glass (106) and at least one molten cladding glass (126). The multi-layer glass melt (300) has a width Wm, a melt thickness Tm and a core to cladding thickness ratio TC:TCl. The multi-layer glass melt (300) is directed onto the surface of a molten metal bath (162) contained in a float tank (160). The width Wm of the multi-layer glass melt (300) is less than the width Wf of the float tank (160) prior to the multi-layer glass melt (300) entering the float tank (160). The multilayer glass melt (300) flows over the surface of the molten metal bath (162) such that the width Wm of the multi-layer glass melt (300) increases, the melt thickness Tm decreases, and the core to cladding thickness ratio TC:TCl remains constant as the multi-layer glass melt (300) solidifies into a laminated glass sheet. The invention also relates to the associated apparatus.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 9, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allan Mark Fredholm, Laurent Joubaud, Jean-Pierre Lereboullet, Xavier Tellier
  • Patent number: 9073775
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: July 7, 2015
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Patent number: 9061934
    Abstract: An apparatus and methods for bending sheet glass are disclosed. The present invention improves on the state-of-the-art by providing apparatus and methods that prevent unwanted distortion of the glass sheet. The apparatus and methods utilize localized heating at the bend to allow for overall glass sheet temperatures to be reduced, along with optional mechanical devices for improved bend quality.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: June 23, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Antoine Gaston Denis Bisson, Curtis Richard Cowles, Laurent Joubaud, David John McEnroe, Aniello Mario Palumbo
  • Publication number: 20150000341
    Abstract: An apparatus and methods for bending sheet glass are disclosed. The present invention improves on the state-of-the-art by providing apparatus and methods that prevent unwanted distortion of the glass sheet. The apparatus and methods utilize localized heating at the bend to allow for overall glass sheet temperatures to be reduced, along with optional mechanical devices for improved bend quality.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 1, 2015
    Inventors: Antoine Gaston Denis Bisson, Curtis Richard Cowles, Laurent Joubaud, David John McEnroe, Aniello Mario Palumbo
  • Publication number: 20140352360
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 8869560
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 28, 2014
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy