Patents by Inventor Lawrence C. West

Lawrence C. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7529435
    Abstract: An optical signal distribution network including a semiconductor substrate including a waveguide formed therein to carry an optical signal; and a plurality of detectors within the waveguide and serially arranged along its length, each of the detectors being capable of detecting the optical signal passing through it and sufficiently transparent to the optical signal to enable the optical signal to reach and be detected by all of the plurality of detectors.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: May 5, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. West, Dan Mayden
  • Patent number: 7505647
    Abstract: Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 17, 2009
    Assignee: Applied Amterials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Publication number: 20080124084
    Abstract: An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
    Type: Application
    Filed: June 29, 2007
    Publication date: May 29, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Patent number: 7298941
    Abstract: An optoelectronic circuit including: an IC chip made up of a substrate in which an optical waveguide and a mirror have been fabricated, the substrate having a first lens formed thereon, wherein the mirror is aligned with the optical waveguide and the first lens is aligned with the mirror to form an optical path connecting the first lens, the mirror, and the optical waveguide; and an optical coupler including a second lens, the optical coupler affixed to the substrate and positioned to align the second lens with the first lens so as to couple an optical signal into or out of the optical waveguide within the IC chip.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Edward L. Palen, Gregory L. Wojcik, Lawrence C. West
  • Patent number: 7205624
    Abstract: A method of fabricating a detector, the method including forming an island of detector core material on a substrate, the island having a horizontally oriented top end, a vertically oriented first sidewall, and a vertically oriented second sidewall that is opposite said first sidewall; implanting a first dopant into the first sidewall to form a first conductive region that has a top end that is part of the top end of the island; implanting a second dopant into the second sidewall to form a second conductive region that has a top end that is part of the top end of the island; fabricating a first electrical connection to the top end of the first conductive region; and fabricating a second electrical connection to the top end of the second conductive region.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Francisco A. Leon, Lawrence C. West
  • Patent number: 7170142
    Abstract: A planar integrated circuit includes a semiconductor substrate having a substrate surface and a trench in the substrate, a waveguide medium in the trench having a top surface and a light propagation axis, the trench having a sufficient depth for the waveguide medium to be at or below said substrate surface, and at least one Schottky barrier electrode formed on the top surface of said waveguide medium and defining a Schottky barrier detector consisting of the electrode and the portion of the waveguide medium underlying the Schottky barrier electrode, at least the underlying portion of the waveguide medium being a semiconductor and defining an electrode-semiconductor interface parallel to the light propagation axis so that light of a predetermined wavelength from said waveguide medium propagates along the interface as a plasmon-polariton wave.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: January 30, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Gregory L. Wojcik, Lawrence C. West, Thomas P. Pearsall
  • Patent number: 7151881
    Abstract: An optical circuit including a semiconductor substrate; an optical waveguide formed in or on the substrate; and an optical detector formed in or on the semiconductor substrate, wherein the optical detector is aligned with the optical waveguide so as to receive an optical signal from the optical waveguide during operation, and wherein the optical detector has: a first electrode; a second electrode; and an intermediate layer between the first and second electrodes, the intermediate layer being made of a semiconductor material characterized by a conduction band, a valence band, and deep level energy states introduced between the conduction and valence bands.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: December 19, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. West, Thomas P. Pearsall, Francisco A. Leon, Stephen Moffatt
  • Patent number: 7110629
    Abstract: An article of manufacture comprising an optical-ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: September 19, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Claes Bjorkman, Lawrence C. West, Dan Maydan, Samuel Broydo
  • Patent number: 7103079
    Abstract: A circuit for generating a clock or sampling signal, the circuit including: a semiconductor quantum dot laser element including a region of quantum dots, wherein the region of quantum dots is characterized by an emission distribution having a half-width of at least about 10 meV; and drive circuitry connected to the quantum dot laser element for operating the quantum dot laser element as a mode-locked laser that outputs a periodic, uniformly spaced sequence of pulses, wherein the clock or sampling signal is derived from the sequence of pulses.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 5, 2006
    Assignee: Applied Materials, Inc.
    Inventors: John G. McInerney, Gregory L. Wojcik, Lawrence C. West
  • Patent number: 7075165
    Abstract: A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: July 11, 2006
    Assignee: Applied Material, Inc.
    Inventors: Francisco A. Leon, Lawrence C. West, Yuichi Wada, Gregory L. Wojcik, Stephen Moffatt
  • Patent number: 7072534
    Abstract: An article of manufacture comprising an optical ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: July 4, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Claes Björkman, Lawrence C. West, Dan Maydan, Samuel Broydo
  • Patent number: 7043106
    Abstract: An optical ready substrate made at least in part of a first semiconductor material and having a front side and a backside, the front side having a top surface that is of sufficient quality to permit microelectronic circuitry to be fabricated thereon using semiconductor fabrication processing techniques. The optical ready substrate includes an optical signal distribution circuit fabricated on the front side of the substrate in a first layer region beneath the top surface of the substrate. The optical signal distribution circuit is made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuitry to be fabricated thereon.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. West, Claes Björkman, Dan Maydan, Samuel Broydo
  • Patent number: 7001788
    Abstract: A method of fabricating a waveguide mirror that involves etching a trench in a silicon substrate; depositing a film (e.g. silicon dioxide) over the surface of the silicon substrate and into the trench; ion etching the film to remove at least some of the deposited silicon dioxide and to leave a facet of film in inside corners of the trench; depositing a layer of SiGe over the substrate to fill up the trench; and planarizing the deposited SiGe to remove the SiGe from above the level of the trench.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: February 21, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Francisco A. Leon, Lawrence C. West, Gregory L. Wojcik, Yuichi Wada
  • Publication number: 20040114853
    Abstract: An article of manufacture comprising an optical-ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
    Type: Application
    Filed: July 21, 2003
    Publication date: June 17, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Claes Bjorkman, Lawrence C. West, Dan Maydan, Samuel Broydo
  • Publication number: 20040013338
    Abstract: An article of manufacture comprising an optical ready substrate made of a first semiconductor layer, an insulating layer on top of the first semiconductor layer, and a second semiconductor layer on top of the insulating layer, wherein the second semiconductor layer has a top surface and is laterally divided into two regions including a first region and a second region, the top surface of the first region being of a quality that is sufficient to permit microelectronic circuitry to be formed therein and the second region including an optical signal distribution circuit formed therein, the optical signal distribution circuit made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuit to be fabricated in the first region of the second semiconductor layer.
    Type: Application
    Filed: October 25, 2002
    Publication date: January 22, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Claes Bjorkman, Lawrence C. West, Dan Maydan, Samuel Broydo
  • Publication number: 20040012041
    Abstract: An optical ready substrate made at least in part of a first semiconductor material and having a front side and a backside, the front side having a top surface that is of sufficient quality to permit microelectronic circuitry to be fabricated thereon using semiconductor fabrication processing techniques. The optical ready substrate includes an optical signal distribution circuit fabricated on the front side of the substrate in a first layer region beneath the top surface of the substrate. The optical signal distribution circuit is made up of interconnected semiconductor photonic elements and designed to provide signals to the microelectronic circuitry to be fabricated thereon.
    Type: Application
    Filed: October 25, 2002
    Publication date: January 22, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Lawrence C. West, Claes Bjorkman, Dan Maydan, Samuel Broydo
  • Patent number: 6311003
    Abstract: An optical electronic integrated circuit (OEIC) having optical waveguides as device interconnects. An optical waveguide is formed by depositing, in an oxygen-free atmosphere, a film of semiconductor material on a semiconductor substrate at a temperature that substantially diminishes the porosity of the film and the diffusion of material from the substrate into the film. The semiconductor film, which has an index of refraction greater than that of the substrate, is etched to form the optical waveguide on the substrate. The substrate also supports a plurality of active optical devices between which the optical waveguide extends. The substrate is preferably formed from gallium-arsenide and the waveguide from germanium. The active devices may also include these materials as well as aluminum-gallium-arsenide.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: October 30, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Madan Dubey, Kenneth A. Jones, Weiyu Han, Lawrence C. West
  • Patent number: 6051445
    Abstract: An optical electronic integrated (circuit (OEIC) having optical waveguides s device interconnects. An optical waveguide is formed by depositing, in an oxygen-free atmosphere, a film of semiconductor material on a semiconductor substrate at a temperature that substantially diminishes the porosity of the film and the diffusion of material from the substrate into the film. The semiconductor film, which has an index of refraction greater than that of the substrate, is etched to form the optical waveguide on the substrate. The substrate also supports a plurality of active optical devices between which the optical waveguide extends. The substrate is preferably formed from gallium-arsenide and the waveguide from germanium. The active devices may also include these materials as well as aluminum-gallium-arsenide. When using these materials, the germanium film is deposited in an oxygen-free environment at about 100 degrees centigrade.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Madan Dubey, Kenneth A. Jones, Weiyu Han, Lawrence C. West
  • Patent number: 5917967
    Abstract: An optical electronic integrated circuit (OEIC) having optical waveguides as device interconnects. An optical waveguide is formed by depositing, in an oxygen-free atmosphere, a film of semiconductor material on a semiconductor substrate at a temperature that substantially diminishes the porosity of the film and the diffusion of material from the substrate into the film. The semiconductor film, which has an index of refraction greater than that of the substrate, is etched to form the optical waveguide on the substrate. The substrate also supports a to plurality of active optical devices between which the optical waveguide extends. The substrate is preferably formed from gallium-arsenide and the waveguide from germanium. The active devices may also include these materials as well as aluminum-gallium-arsenide. When using these materials, the germanium film is deposited in an oxygen-free environment at about 100 degrees centigrade.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: June 29, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Madan Dubey, Kenneth A. Jones, Weiyu Han, Lawrence C. West
  • Patent number: 5386126
    Abstract: A solid state, electronic, optical transition device includes a multiple-layer structure of semiconductor material which supports substantially ballistic electron/hole transport at energies above/below the conduction/valance band edge. The multiple layer structure of semiconductor material includes a Fabry-Perot filter element for admitting electrons/holes at a first quasibound energy level above/below the conduction/valance band edge, and for depleting electrons/holes at a second quasibound energy level which is lower/higher than the first energy level. Such an arrangement allows common semiconductor material to be used to produce emitters and detectors and other devices which can operate at any of selected frequencies over a wide range of frequencies.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: January 31, 1995
    Inventors: Gregory H. Henderson, Lawrence C. West, Thomas K. Gaylord, Charles W. Roberts, Elias N. Glytsis, Moses T. Asom