Patents by Inventor Lawrence S. Pan

Lawrence S. Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10809049
    Abstract: Disclosed are methods and systems for measuring and managing swelling of rechargeable batteries in situ. Some implementations involve using capacity fade or state of health of rechargeable batteries to estimate swelling of the rechargeable batteries. Some implementations provide methods and systems for measuring battery swelling based on inductive or capacitive coupling between sensors and the battery. Some implementations provide means to manage or reduce swelling of rechargeable batteries by applying adaptive charging with consideration of battery swelling.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Qnovo Inc.
    Inventors: Dania Ghantous, Allison Pinoli, Lawrence S. Pan, David J. Coakley, Bryan McLaughlin
  • Publication number: 20180149462
    Abstract: Disclosed are methods and systems for measuring and managing swelling of rechargeable batteries in situ. Some implementations involve using capacity fade or state of health of rechargeable batteries to estimate swelling of the rechargeable batteries. Some implementations provide methods and systems for measuring battery swelling based on inductive or capacitive coupling between sensors and the battery. Some implementations provide means to manage or reduce swelling of rechargeable batteries by applying adaptive charging with consideration of battery swelling.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Dania Ghantous, Allison Pinoli, Lawrence S. Pan, David J. Coakley, Bryan McLaughlin
  • Publication number: 20110311855
    Abstract: The invention provides solutions to the problems and needs stated above by providing battery separators that are inexpensive and easy to produce, provide superior performance over traditional separators, and provide robust safety. Towards those ends, the invention provides, in one aspect, the invention provides for a battery electrode comprising: an electrode having a surface, the electrode comprising: a plurality of active material particles; and, a plurality of electrically conductive particles, wherein the active material particles are capable of reversibly storing ions; a separator layer upon the electrode surface, the separator layer having top and bottom surfaces, the bottom surface facing each electrode surface, the separator layer comprising: a plurality of organic polymer particles, each particle having a gross cross sectional dimension between 0.
    Type: Application
    Filed: September 3, 2010
    Publication date: December 22, 2011
    Inventors: Shufu Peng, Lawrence S. Pan, Clark Dong
  • Publication number: 20110183203
    Abstract: Methods and devices arising from the practice thereof for making and using battery electrodes formed onto ion permeable, electrically non-conductive substrates, preferably battery separators are disclosed herein. Electrodes are formed onto substrates using a variety of methods including, but not limited to, spray coating and electrophoretic deposition. Electrically conductive layers may be applied to the electrode coating layer side opposite or adjacent to the substrate to act as current collectors for the battery. Multilayer devices having alternating layers of conductive layers, electrode layers and substrates, wherein the conductive layers may be in electrical communication with other conductive layers to form a battery.
    Type: Application
    Filed: January 27, 2011
    Publication date: July 28, 2011
    Inventors: Chunsheng Du, Clark Dong, Lawrence S. Pan, Shufu Peng
  • Publication number: 20110143018
    Abstract: The invention provides, in preferred embodiments, methods, systems, and devices arising therefrom for making battery electrodes, in particular, for lithium-ion batteries. Unlike conventional slurry coating methods that use mechanical means to coat thick pastes of active material, other materials, and solvent(s) onto a substrate, the invention provides for a method to produce electrode coatings onto support in a multi-layer approach to provide highly uniform distribution of materials within the electrode. Problems of differential sedimentation of particles in slurries found in conventional methods are minimized with the methods of the present invention. Also included are systems for producing in large-scale the battery electrodes of the invention. Further included are electrodes produced by the methods and systems described herein.
    Type: Application
    Filed: September 3, 2010
    Publication date: June 16, 2011
    Inventors: Shufu Peng, Lawrence S. Pan
  • Publication number: 20110123866
    Abstract: The invention disclosed herein provides for methods and apparatuses that yield electrodes having at least one functional gradient therein. In many embodiments, the electrodes comprise an electrode matrix having a plurality of layers, where at least two of the layers differs functionally, in composition, structure, or, organization. High-throughput electrode screening apparatuses are disclosed that include array formers and testers. Electrodes and battery cells arising from the methods and apparatuses disclosed herein are likewise disclosed. The methods, apparatuses, and resulting electrode and cell devices are, in some embodiments, ideally suited for use in lithium-ion batteries.
    Type: Application
    Filed: September 3, 2010
    Publication date: May 26, 2011
    Inventors: Lawrence S. Pan, Shufu Peng, Anna Lynne Heinkel
  • Publication number: 20080317660
    Abstract: Nanotube structures and methods for forming nanotube structures are disclosed. The methods include forming nanotubes such that they are associated with a surface of a substrate and compressing at least a portion of the nanotubes. In some embodiments, the nanotubes may be dimensionally constrained in one direction while being compressed in another direction. Compressing at least a portion of the nanotubes may comprise stamping an impression into a surface of the nanotubes, at least a portion of which is retained when the stamp is removed. In some embodiments, the nanotubes may be aligned with respect to one another and to the surface of the substrate and may extend in a direction that is, for example, normal to the substrate.
    Type: Application
    Filed: August 31, 2008
    Publication date: December 25, 2008
    Applicant: MOLECULAR NANOSYSTEMS, INC.
    Inventors: Lawrence S. Pan, Bert Fornaciari
  • Patent number: 7315115
    Abstract: A light-emitting device contains getter material (58) typically distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device similarly contains getter material (112, 110/112, 128, 132, and 142) typically distributed relatively uniformly across the active electron-emitting portion of the device.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: January 1, 2008
    Assignees: Canon Kabushiki Kaisha, Sony Corporation
    Inventors: Christopher J. Curtin, Duane A. Haven, George B. Hopple, Lawrence S. Pan, Igor L. Maslennikov, Michael J. Nystrom, Jun Gordon Liu, Randolph S. Gluck, Tomoo Kosugi, James C. Dunphy, David L. Morris
  • Patent number: 7052588
    Abstract: In one embodiment a method for sensing specific molecules is provided. The method comprises forming a nanoelement structure and forming two spaced apart electrodes in contact with the nanoelement structure, wherein at least one of the electrodes is capable of functioning as a sensing element to sense the specific molecules.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: May 30, 2006
    Assignee: Molecular Nanosystems, Inc.
    Inventors: Gang Gu, Lawrence S. Pan
  • Patent number: 7002289
    Abstract: A light-emitting device (52) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each of a group of the light-emissive particles is conformally covered with a group of intensity-enhancement coatings (82 and 84).
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: February 21, 2006
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc., Sony Corporation
    Inventors: John D. Porter, Roger A. Pearson, Kazuo Kajiwara, Haruo Kato, Lawrence S. Pan, Shiyou Pei, Theodore S. Fahlen
  • Patent number: 6861798
    Abstract: The present invention provides a spacer assembly which is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly when the spacer assembly is subjected to flat panel display operating voltages. The present invention further provides a spacer assembly which accomplishes the above achievement and which does not degrade severely when subjected to electron bombardment. The present invention further provides a spacer assembly which accomplishes both of the above-listed achievements and which does not significantly contribute to contamination of the vacuum environment of the flat panel display or be susceptible to contamination that may evolve within the tube. Specifically, in one embodiment, the present invention is comprised of a spacer structure which has a specific secondary electron emission coefficient function associated therewith.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: March 1, 2005
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc.
    Inventors: Lawrence S. Pan, Donald R. Schropp, Jr., Vasil M. Chakarov, John K. O'Reilly, George B. Hopple, Christopher J. Spindt, Roger W. Barton, Michael J. Nystrom, Ramamoorthy Ramesh, James C. Dunphy, Shiyou Pei, Kollengode S. Narayanan
  • Patent number: 6812636
    Abstract: A light-emitting device (52) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each light-emissive particle is conformally covered with a coating (74) that provides light reflection or/and gettering.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: November 2, 2004
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc., Sony Corporation
    Inventors: John D. Porter, Roger A. Pearson, Kazuo Kajiwara, Haruo Kato, Lawrence S. Pan, Shiyou Pei, Theodore S. Fahlen
  • Publication number: 20040104129
    Abstract: In one embodiment a method for sensing specific molecules is provided. The method comprises forming a nanoelement structure and forming two spaced apart electrodes in contact with the nanoelement structure, wherein at least one of the electrodes is capable of functioning as a sensing element to sense the specific molecules.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Gang Gu, Lawrence S. Pan
  • Patent number: 6734608
    Abstract: A structure suitable for partial or full use in a spacer (24) of a flat-panel display has a porous face (54). The structure may be formed with multiple aggregates (100) of coated particles (102) bonded together in an open manner to form pores (58). A coating (88) consisting primarily of carbon and having a highly uniform thickness may extend into pores of a porous body (46). The coating can be created by removing non-carbon material from carbon-containing species provided along the pores. A solid porous film (82) whose thickness is normally no more than 20 &mgr;m has a resistivity of 108-1014 ohm-cm. A spacer for a flat-panel display contains a support body (80) and an overlying, normally porous, layer (82) whose resistivity is greater parallel to a face of the support body than perpendicular to the body's face.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: May 11, 2004
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc., Nanopore Incorporated
    Inventors: Roger W. Barton, Michael J. Nystrom, Bob L. Mackey, Lawrence S. Pan, Shiyou Pei, Stephen Wallace, Douglas M. Smith
  • Patent number: 6691404
    Abstract: A flat-panel display is fabricated according to a process in which a liquid-containing film (92, 116, 124, 132, 144, or 166) is formed over a substrate (80). In addition to suitable liquid, the liquid-containing film contains oxide or/and hydroxide. Liquid is removed from the liquid-containing film to convert it into a solid porous film (82 or 150) having (a) a porosity of at least 10% along an exposed face of the film, (b) an average resistivity of 108-1014 ohm-cm at 25° C., and (c) an average thickness of no more than 20 &mgr;m. A spacer (24) formed with at least a segment of the substrate and overlying solid porous film is positioned between opposing first and second plate structures (20 and 22) of the display. The second plate structure (22) emits light upon receiving electrons emitted by the first plate structure (20).
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: February 17, 2004
    Assignees: Candescent Intellectual Property Services, Inc., Candescent Technologies Corporation, NanoPore Inc.
    Inventors: Roger W. Barton, Michael J. Nystrom, Bob L. Mackey, Lawrence S. Pan, Shiyou Pei, Stephen Wallace, Douglas M. Smith
  • Patent number: 6630786
    Abstract: A light-emitting device (42, 68, 80, 90, or 100) suitable for a flat-panel CRT display contains a plate (54), a light-emissive region (56), a light-blocking region (58), and a light-reflective layer (60 or 70). The light-emitting device achieves one or more of the following characteristics by suitably implementing the light-reflective layer or/and providing one or more layers (72, 82, 92, and 100) along the light-reflective layer: (a) reduced electron energy loss as electrons pass through the light-reflective layer, (b) gettering along the light-reflective layer, (c) reduced secondary electron emission along the light-reflective layer, (d) reduced electron backscattering along the light-reflective layer, and (e) reduced chemical reactivity along the light-reflective layer.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: October 7, 2003
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc.
    Inventors: William J. Cummings, Lawrence S. Pan, Christopher J. Spindt, George B. Hopple, Colin D. Stanners, James C. Dunphy, Shiyou Pei, Theodore S. Fahlen
  • Publication number: 20030080476
    Abstract: A structure suitable for partial or full use in a spacer (24) of a flat-panel display has a porous face (54). The structure may be formed with multiple aggregates (100) of coated particles (102) bonded together in an open manner to form pores (58). A coating (88) consisting primarily of carbon and having a highly uniform thickness may extend into pores of a porous body (46). The coating can be created by removing non-carbon material from carbon-containing species provided along the pores. A solid porous film (82) whose thickness is normally no more than 20 &mgr;m has a resistivity of 108 -1014 ohm-cm. A spacer for a flat-panel display contains a support body (80) and an overlying, normally porous, layer (82) whose resistivity is greater parallel to a face of the support body than perpendicular to the body's face.
    Type: Application
    Filed: January 25, 2001
    Publication date: May 1, 2003
    Applicant: Candescent Technologies Corporation
    Inventors: Roger W. Barton, Michael J. Nystrom, Bob L. Mackey, Lawrence S. Pan, Shiyou Pei, Stephen Wallace, Douglas M. Smith
  • Patent number: 6512335
    Abstract: Methods for performing cathode burn-in with respect to an FED display that avoid display non-uniformities near and around the spacer wall structures. In a first method, the anode is floated or receives a negative voltage with respect to the electron emitter. A positive voltage is then applied to the focus waffle structure with respect to the electron emitter. The cathode is then energized thereby preventing emitted electrons from escaping the focus well. Under these conditions, cathode burn-in conditioning can occur but electrons are energetically forbidden from hitting the anode or the spacer walls except for a small region near the focus waffle. Under the second method, the anode is grounded or allowed to float. A negative bias is applied to the focus waffle. This causes electrons to be collected at the M2 layer of the gate. Electrons are energetically forbidden from hitting any portion of the tube except the M2 layer.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 28, 2003
    Assignee: Candescent Technologies Corporation
    Inventors: James C. Dunphy, William J. Cummings, Colin D. Stanners, Lawrence S. Pan
  • Publication number: 20020190643
    Abstract: A light-emitting device (42, 68, 80, 90, or 100) suitable for a flat-panel CRT display contains a plate (54), a light-emissive region (56), and a light-reflective layer (60 or 70). The light-emitting device achieves one or more of the following characteristics by suitably implementing the light-reflective layer or/and providing one or more layers (72, 82, 92, and 100) along the light-reflective layer: (a) reduced electron energy loss as electrons pass through the light-reflective layer, (b) gettering along the light-reflective layer, (c) reduced secondary electron emission along the light-reflective layer, (d) reduced electron backscattering along the light-reflective layer, and (e) reduced chemical reactivity along the light-reflective layer.
    Type: Application
    Filed: March 30, 2001
    Publication date: December 19, 2002
    Inventors: William J. Cummings, Lawrence S. Pan, Christopher J. Spindt, George B. Hopple, Colin D. Stanners, James C. Dunphy, Shiyou Pei, Theodore S. Fahlen
  • Publication number: 20020167262
    Abstract: A light-emitting device (52, 80, 110, 128, or 130) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each light-emissive particle is conformally covered with one or more coatings (74, 82, 84, 112, and 114). The coatings variously provide light-reflection, gettering, intensity-enhancement, and contrast-enhancement functions.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 14, 2002
    Applicant: Candescent Technologies Corporation;
    Inventors: John D. Porter, Roger A. Pearson, Kazuo Kajiwara, Haruo Kato, Lawrence S. Pan, Shiyou Pei, Theodore S. Fahlen