Patents by Inventor Lawrence Seibles

Lawrence Seibles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6337057
    Abstract: The invention relates to a system and method for the recovery of germanium from the Modified Chemical Vapor Deposition (MCVD) processing wastes by chemical conversion and recovery of germanium from the solid cake product. In the present method, the direct reaction of gaseous hydrogen chloride with the recovered materials effects the rapid and complete chlorination of the germanates, yielding germanium tetrachloride. The germanium tetrachloride product is completely volatilized and removed from the mixture during the exothermic process.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: January 8, 2002
    Assignee: Lucent Technologies, Inc.
    Inventors: Michael Philip Bohrer, Po-Yen Lu, Lawrence Seibles
  • Patent number: 5811916
    Abstract: Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: September 22, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Gregory Peter Kochanski, Lawrence Seibles, Wei Zhu
  • Patent number: 5744195
    Abstract: Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: April 28, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Gregory Peter Kochanski, Lawrence Seibles, Wei Zhu
  • Patent number: 5637950
    Abstract: Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
    Type: Grant
    Filed: October 31, 1994
    Date of Patent: June 10, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Gregory P. Kochanski, Lawrence Seibles, Wei Zhu
  • Patent number: 5441013
    Abstract: In contrast to previous approaches, the present inventors have discovered that diamond films can be grown by carbon CVT reactions occurring exclusively in the exothermic regime, where the lower temperature (<1500.degree.C.) conditions considerably simplify the equilibrium gas phase chemistry. Under these conditions of a small temperature gradient and short transport distance between the source and substrate, supersaturation of the gas phase with regard to graphite and diamond does not attain sufficiently high values to induce spontaneous homonucleation of graphite and diamond in the gas phase. With this process, temperatures as low as 680.degree.C. were found to be sufficient to induce the growth of continuous diamond films free of non-diamond allotropes.
    Type: Grant
    Filed: March 23, 1993
    Date of Patent: August 15, 1995
    Assignee: AT&T Bell Laboratories
    Inventors: Guang-kai D. Jeng, James W. Mitchell, Lawrence Seibles