Patents by Inventor Lee David Dunbar

Lee David Dunbar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180368128
    Abstract: A wireless RF data transmission system has at least one base station transmitting control information on a control channel and high speed data on at least one data channel. At least one subscriber station receives the control information and data channels, adjusting a modulation and/or coding of reception of the data in response to the control information. Preferably, the control information is transmitted using a more robust modulation, such as QPSK, than used to transmit the data, which is preferably transmitted using either 16, 64 or 256 QAM. Additionally, timing or header information for the data may be included on the control channel.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Mark D. Reudink, Lee David Dunbar, Bruce C. Rothaar
  • Patent number: 10070423
    Abstract: A wireless RF data transmission system has at least one base station transmitting control information on a control channel and high speed data on at least one data channel. At least one subscriber station receives the control information and data channels, adjusting a modulation and/or coding of reception of the data in response to the control information. Preferably, the control information is transmitted using a more robust modulation, such as QPSK, than used to transmit the data, which is preferably transmitted using either 16, 64 or 256 QAM. Additionally, timing or header information for the date may be included on the control channel.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: September 4, 2018
    Assignee: NETGEAR, Inc.
    Inventors: Mark D. Reudink, Lee David Dunbar, Bruce C. Rothaar
  • Publication number: 20170311305
    Abstract: A wireless RF data transmission system has at least one base station transmitting control information on a control channel and high speed data on at least one data channel. At least one subscriber station receives the control information and data channels, adjusting a modulation and/or coding of reception of the data in response to the control information. Preferably, the control information is transmitted using a more robust modulation, such as QPSK, than used to transmit the data, which is preferably transmitted using either 16, 64 or 256 QAM. Additionally, timing or header information for the date may be included on the control channel.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 26, 2017
    Inventors: Mark D. Reudink, Lee David Dunbar, Bruce C. Rothaar
  • Patent number: 9730192
    Abstract: A wireless RF data transmission system has at least one base station transmitting control information on a control channel and high speed data on at least one data channel. At least one subscriber station receives the control information and data channels, adjusting a modulation and/or coding of reception of the data in response to the control information. Preferably, the control information is transmitted using a more robust modulation, such as QPSK, than used to transmit the data, which is preferably transmitted using either 16, 64 or 256 QAM. Additionally, timing or header information for the data may be included on the control channel.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: August 8, 2017
    Assignee: NETGEAR, Inc.
    Inventors: Mark D. Reudink, Lee David Dunbar, Bruce C. Rothaar
  • Patent number: 9675819
    Abstract: A system and method for providing real-time, image-guided high intensity focused ultrasound (HIFU) targeting and treatment of tissue. In one embodiment, the system includes an HIFU applicator and a user interface with a touchscreen display for three-dimensional visualization of the tissue. Image frames displayed on the user interface depict real-time images of the tissue, including an image parallel to a feature of the applicator and an image orthogonal to the parallel image. Reference lines may be sketched using the touchscreen and displayed on the image frames. In one embodiment, tissue boundaries are detected and marked on the image frames, either by the user or automatically by the system. In another embodiment, the user interface includes a footswitch for the user to interact with the system. In another embodiment, the system includes an ultrasound imaging component configured to undock from the system for use as a stand-alone ultrasound imaging device.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 13, 2017
    Assignee: Mirabilis Medica, Inc.
    Inventors: Lee David Dunbar, Jessica E. Parsons, Robert H. Pedersen, Tim Etchells, Gregory Paul Darlington, Michael P. H. Lau, Jens Ulrich Quistgaard
  • Publication number: 20140018708
    Abstract: A system and method for providing real-time, image-guided high intensity focused ultrasound (HIFU) targeting and treatment of tissue. In one embodiment, the system includes an HIFU applicator and a user interface with a touchscreen display for three-dimensional visualization of the tissue. Image frames displayed on the user interface depict real-time images of the tissue, including an image parallel to a feature of the applicator and an image orthogonal to the parallel image. Reference lines may be sketched using the touchscreen and displayed on the image frames. In one embodiment, tissue boundaries are detected and marked on the image frames, either by the user or automatically by the system. In another embodiment, the user interface includes a footswitch for the user to interact with the system. In another embodiment, the system includes an ultrasound imaging component configured to undock from the system for use as a stand-alone ultrasound imaging device.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 16, 2014
    Inventors: Lee David Dunbar, Jessica E. Parsons, Robert H. Pedersen, Tim Etchells, Gregory Paul Darlington, Michael P.H. Lau, Jens Ulrich Quistgaard