Patents by Inventor Lee M. Nicholson

Lee M. Nicholson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110111590
    Abstract: Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the plurality of interconnects.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7892940
    Abstract: Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the at least one interconnect.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7592685
    Abstract: Semiconductor structure includes an insulator layer having at least one interconnect feature and at least one gap formed in the insulator layer spanning more than a minimum spacing of interconnects.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 22, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7541679
    Abstract: Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed-pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant Into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 2, 2009
    Assignee: International Business Machines Corporation
    Inventors: Edward C Cooney, III, John A Fitzsimmons, Jeffrey P Gambino, Stephen E Luce, Thomas L McDevitt, Lee M Nicholson, Anthony K Stamper
  • Publication number: 20080254630
    Abstract: Method of manufacturing a semiconductor device structure, including the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the at least one interconnect.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 16, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. EDELSTEIN, Matthew E. Colburn, Edward C. Cooney, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7407879
    Abstract: An electrical interconnect structure on a substrate, which includes: a first low-k dielectric layer; a spin-on low k CMP protective layer that is covalently bonded to the first low-k dielectric layer; and a CVD deposited hardmask/CMP polish stop layer is provided. Electrical vias and lines can be formed in the first low k dielectric layer. The spin-on low k CMP protective layer prevents damage to the low k dielectric which can be created due to non-uniformity in the CMP process from center to edge or in areas of varying metal density. The thickness of the low-k CMP protective layer can be adjusted to accommodate larger variations in the CMP process without significantly impacting the effective dielectric constant of the structure.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: August 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Lee M Nicholson, Wei-Tsu Tseng, Christy S Tyberg
  • Patent number: 7405147
    Abstract: A method for manufacturing a structure includes providing a structure having an insulator layer with at least one interconnect and forming a sub lithographic template mask on the insulator layer. A selective etching step is used for etching the insulator layer through the sub lithographic template mask to form sub lithographic features near the at least one interconnect. A supra lithographic blocking mask may also be utilized. In another aspect, the method includes forming pinch off sections of sub lithographic size formed in a capping layer on the insulator layer. A semiconductor structure includes an insulator layer having at least one interconnect feature and at least one column formed in the insulator layer. A plurality of sub lithographic features formed on a top portion of the insulator layer and communicating with the at least one column is also provided. The plurality of sub lithographic features have a cross section or diameter less than any of the at least one column.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: July 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7273770
    Abstract: A structure for a chip or chip package is disclosed, with final passivation and terminal metallurgy which are mechanically decoupled but electrically coupled to the multilayer on-chip interconnects. This decoupling allows the chip to survive packaging stresses in the final passivation region, with strain relief from the decoupling region and compliant leads therein, so that on-chip interconnect levels do not feel these external packaging or other stresses. This structure is particularly preferred for on-chip interconnects consisting of Cu and low-k dielectric, the latter having inferior mechanical properties relative to SiO2. The decoupled region extends over all chips on the wafer. It may also extend into the edgeseal or dicing channel region so as to allow chip dicing and retention of this mechanical decoupling all around every chip on the wafer.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: September 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Lee M. Nicholson
  • Patent number: 7098544
    Abstract: A structure for a chip or chip package is disclosed, with final passivation and terminal metallurgy which are mechanically decoupled but electrically coupled to the multilayer on-chip interconnects. This decoupling allows the chip to survive packaging stresses in the final passivation region, with strain relief from the decoupling region and compliant leads therein, so that on-chip interconnect levels do not feel these external packaging or other stresses. This structure is particularly preferred for on-chip interconnects consisting of Cu and low-k dielectric, the latter having inferior mechanical properties relative to SiO2. The decoupled region extends over all chips on the wafer. It may also extend into the edgeseal or dicing channel region so as to allow chip dicing and retention of this mechanical decoupling all around every chip on the wafer.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Lee M. Nicholson
  • Patent number: 7071539
    Abstract: An electrical interconnect structure on a substrate, which includes: a first low-k dielectric layer; a spin-on low k CMP protective layer that is covalently bonded to the first low-k dielectric layer; and a CVD deposited hardmask/CMP polish stop layer is provided. Electrical vias and lines can be formed in the first low k dielectric layer. The spin-on low k CMP protective layer prevents damage to the low k dielectric which can be created due to non-uniformity in the CMP process from center to edge or in areas of varying metal density. The thickness of the low-k CMP protective layer can be adjusted to accommodate larger variations in the CMP process without significantly impacting the effective dielectric constant of the structure.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Lee M Nicholson, Wei-Tsu Tseng, Christy S Tyberg
  • Patent number: 7015150
    Abstract: Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, John A. Fitzsimmons, Jeffrey P. Gambino, Stephen E. Luce, Thomas L. McDevitt, Lee M. Nicholson, Anthony K. Stamper
  • Patent number: 6960519
    Abstract: Methods and conductive interconnect structures are provided for preventing cracks in a dielectric layer on a substrate. Substantially half cylindrical or cylindrical trench openings are formed within at least one dielectric layer, which are then filled with a high conductivity metal for forming substantially half cylindrical or cylindrical wires. The rounded bottom portions of the substantially half cylindrical wires, or the rounded bottom and top portions of the substantially half cylindrical wires, avoid any propagation points for starting cracks in the dielectric layer, as compared to conventional rectangular conductors having angled edges, which in fact are propagation points for initiating cracks. The substantially half cylindrical or cylindrical wires also reduce the line-to-line capacitance between neighboring wires, substantially eliminate any high stress points in the dielectric layer, reduce mechanical stresses induced on the IC and increase the overall mechanical strength of the IC.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 1, 2005
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Lee M. Nicholson, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 6849563
    Abstract: The coating thickness and uniformity of spin-on deposition layers on semiconductor wafers is controlled through the in situ control of the viscosity and homogeneity of the mixture of precursor material and solvent material. The thickness of the deposited material is selected and the viscosity required at a given spin rate for the selected thickness is automatically mixed. Sensing and control apparatus are employed to ensure that the uniformity and viscosity required is maintained before dispensing onto said semiconductor wafer. Low-K dielectric materials of selected thickness are deposited in a uniform coating.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: February 1, 2005
    Assignee: International Business Machines Corporation
    Inventors: Edward Barth, John A. Fitzsimmons, Arthur W. Martin, Lee M. Nicholson
  • Patent number: 6838355
    Abstract: A method for forming back-end-of-line (BEOL) interconnect structures in disclosed. The method and resulting structure includes etchback for low-k dielectric materials. Specifically, a low dielectric constant material is integrated into a dual or single damascene wiring structure which contains a dielectric material having relatively high dielectric constant (i.e., 4.0 or higher). The damascene structure comprises the higher dielectric constant material immediately adjacent to the metal interconnects, thus benefiting from the mechanical characteristics of these materials, while incorporating the lower dielectric constant material in other areas of the interconnect level.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: January 4, 2005
    Assignee: International Business Machines Corporation
    Inventors: Anthony K. Stamper, Edward C. Cooney, III, Jeffrey P. Gambino, Timothy J. Dalton, John A. Fitzsimmons, Lee M. Nicholson
  • Publication number: 20040110394
    Abstract: The coating thickness and uniformity of spin-on deposition layers on semiconductor wafers is controlled through the in situ control of the viscosity and homogeneity of the mixture of precursor material and solvent material. The thickness of the deposited material is selected and the viscosity required at a given spin rate for the selected thickness is automatically mixed. Sensing and control apparatus are employed to ensure that the uniformity and viscosity required is maintained before dispensing onto said semiconductor wafer. Low-K dielectric materials of selected thickness are deposited in a uniform coating.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Applicant: International Business Machines Corporation
    Inventors: Edward Barth, John A. Fitzsimmons, Arthur W. Martin, Lee M. Nicholson