Patents by Inventor Lei Hao

Lei Hao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210129706
    Abstract: Management system for a rechargeable energy storage device in an electric vehicle and corresponding method is disclosed. The rechargeable energy storage device has one or more battery packs each having a plurality of modules with one or more respective cells. A respective module management unit is embedded in each of the plurality of modules through respective microcircuits and configured to determine one or more local parameters. A supervisory controller is configured for two-way communication with the respective module management unit. The supervisory controller is configured to receive the local parameters, determine one or more global pack parameters based in part on the local parameters and transmit the global pack parameters back to the respective management unit. The supervisory controller is configured to control operation of the rechargeable energy storage device based in part on the global pack parameters and the local parameters.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Lei Hao, Brian J. Koch, Jeffrey S. Piasecki, Garrett M. Seeman
  • Publication number: 20210129686
    Abstract: An electric propulsion system includes a battery pack and a DC-DC converter. The converter has a bypass switch and semiconductor switches. A traction power inverter module (“TPIM”) rectifies a DC bus voltage on the voltage bus to produce an AC bus voltage. An electric machine is connected to the TPIM and energized via the AC bus voltage. A controller calculates required output power from the converter based on a requested operating mode, and speed and torque of the electric machine. When the output power exceeds a threshold, the bypass switch closes to bypass the converter. When the output power is less than the threshold, the controller uses a minimum loss voltage from a loss map as a target control voltage of the converter to optimize efficiency of the electric propulsion system.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Hao, Chandra S. Namuduri, Suresh Gopalakrishnan, Chengwu Duan, Norman K. Bucknor
  • Patent number: 10998840
    Abstract: An electric drive system includes a battery pack, a power inverter module (“PIM”), an electric machine, a switching circuit, and a controller. The electric machine has three or more phase legs. The PIM has a DC-side connected to the battery pack, and an alternating current (“AC”)-side connected to the electric machine. The switching circuit includes AC switches, and for each phase leg also includes three or more winding sections each electrically connectable to or disconnectable from the battery pack and PIM via the AC switches. The controller commands a binary switching state of each respective AC switch based on the rotary speed to implement one of three different speed-based operating modes of the electric machine, and to thereby vary a conductive path from the PIM to the electric machine through one or more of the connected winding sections.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 4, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Chandra S. Namuduri, Rashmi Prasad
  • Publication number: 20210111648
    Abstract: A system includes a position sensor configured to detect positions of a rotor of a starter motor relative to the position sensor and to output signals indicating the detected positions and a controller configured to rotate the rotor to a plurality of predetermined positions relative to a stator of the starter motor, determine sensed positions of the rotor based on the signals output by the position sensor, and calculate an initial detected position of the rotor based on relationships between the determined sensed positions of the rotor and an expected angular distance between adjacent ones of the predetermined positions.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Inventors: Lei HAO, Chandra S. NAMUDURI
  • Publication number: 20210107348
    Abstract: A vehicle powertrain includes a first power-source configured to generate a first power-source torque and a multiple speed-ratio transmission configured to transmit the first power-source torque to power the vehicle. The powertrain also includes a fluid coupling having a fluid pump shaft operatively connected to the first power-source and a turbine shaft operatively connected to the multi-speed transmission. The fluid coupling is configured to multiply the first power-source torque, and transfer the multiplied first power-source torque to the multiple speed-ratio transmission. The powertrain additionally includes a second power-source configured to generate a second power-source torque and a first torque transfer system configured to connect the second power-source to the first power-source. The powertrain further includes a second torque transfer system configured to connect the second power-source to the multi-speed transmission. A motor vehicle having such a powertrain is also envisioned.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Neeraj S. Shidore, Derek F. Lahr, Lei Hao, Madhusudan Raghavan, Suresh Gopalakrishnan
  • Patent number: 10961971
    Abstract: The present disclosure provides a system for reducing cold start emissions of a motor vehicle. A brushless DC motor is coupled to an engine for cranking the engine. In response to receiving a cold start signal from a cold start actuator, the motor controller activates the brushless DC motor to crank the engine for a cold start duration and increase fuel pressure. In response to a motor controller receiving an auto start signal from an auto start actuator, the motor controller activates the brushless DC motor to crank the engine for an auto start duration that is shorter than the cold start duration. In response to determining that the cold start duration or the auto start duration has expired, an engine controller activates the fuel delivery system to deliver fuel to the engine.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: March 30, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Hao, Wei Zeng, Chandra Namuduri, Sharon Xiaobin Li, Michael C. Zumbaugh
  • Publication number: 20210086620
    Abstract: Presented are intelligent vehicles and control logic for provisioning comprehensive tow features, methods for manufacturing/operating such vehicles, and electric-drive vehicles with tow features for protecting the vehicle's powertrain and electrical components during towing. A method for controlling operation of an electric-drive vehicle includes a vehicle controller verifying initiation of a towing operation for the vehicle, and responsively determining if there is a drive system failure preventing the vehicle's traction motor from electrically connecting with its traction battery pack. If there is no drive system failure, the controller determines if the speed of the traction motor during towing exceeds a calibrated base speed; if so, the controller commands a power inverter to electrically connect the traction motor to the traction battery pack.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 25, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dongxu Li, Lei Hao
  • Publication number: 20210083612
    Abstract: An electric drive system includes a battery pack, a power inverter module (“PIM”), an electric machine, a switching circuit, and a controller. The electric machine has three or more phase legs. The PIM has a DC-side connected to the battery pack, and an alternating current (“AC”)-side connected to the electric machine. The switching circuit includes AC switches, and for each phase leg also includes three or more winding sections each electrically connectable to or disconnectable from the battery pack and PIM via the AC switches. The controller commands a binary switching state of each respective AC switch based on the rotary speed to implement one of three different speed-based operating modes of the electric machine, and to thereby vary a conductive path from the PIM to the electric machine through one or more of the connected winding sections.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Hao, Chandra S. Namuduri, Rashmi Prasad
  • Patent number: 10940771
    Abstract: An electric propulsion system includes a polyphase rotary electric machine that imparts motor torque to a load, a traction power inverter module (“TPIM”) connected to the electric machine, a reconfigurable energy storage system (“RESS”) connected to the TPIM, and a controller. The RESS has multiple battery modules and a switching circuit. The battery modules are connectable in a series-connected (“P-connected”) configuration at a first/low battery voltage level, and a series-connected (“S-connected”) configuration at a second/high battery voltage level that exceeds the first voltage. The controller determines power losses of the electric propulsion system at the first and second battery voltage levels, receives a commanded output torque and output speed of the electric machine, and selects the S-connected or P-connected configuration based on the predetermined power loss and commanded output torque and speed.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 9, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Alireza Fatemi, Thomas W. Nehl, Chandra S. Namuduri, Lei Hao, Norman K. Bucknor
  • Patent number: 10917030
    Abstract: An electric drive system includes a battery pack, a power inverter module (“PIM”), an electric machine, a switching circuit, and a controller. The electric machine has three or more phase legs. The PIM has a DC-side connected to the battery pack, and an alternating current (“AC”)-side connected to the electric machine. The switching circuit includes AC switches. For each phase leg the circuit also includes three or more winding sections each electrically connectable to or disconnectable from the PIM via the AC switches. The controller commands a binary switching state of each respective AC switch based on the rotary speed to implement one of four different speed-based operating modes of the electric machine, and to thereby vary a conductive path from the PIM to the electric machine through one or more of the connected winding sections.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 9, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Chandra S. Namuduri, Rashmi Prasad
  • Publication number: 20210036643
    Abstract: A current command module is configured to, based on a direct current (DC) bus voltage for an electric motor of the vehicle, generate a d-axis current command for the electric motor and a q-axis current command for the electric motor. A voltage command module configured to generate voltage commands based on the d-axis current command and the q-axis current command. A battery switching control module is configured to: determine a voltage operating state of a battery based on the voltage commands; compare a battery parameter to at least one of a predetermined voltage parameter and a predetermined current parameter during a dwell time when a plurality of switches of the battery are open; and generate a switch control signal to transition at least one switch of the plurality of switches to cause the battery to operate in the voltage operating state based on the comparison.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Yue-Yun WANG, Lei HAO, Alireza FATEMI, Thomas W. NEHL, Chandra S. NAMUDURI
  • Publication number: 20210025364
    Abstract: The present disclosure provides a system for reducing cold start emissions of a motor vehicle. A brushless DC motor is coupled to an engine for cranking the engine. In response to receiving a cold start signal from a cold start actuator, the motor controller activates the brushless DC motor to crank the engine for a cold start duration and increase fuel pressure. In response to a motor controller receiving an auto start signal from an auto start actuator, the motor controller activates the brushless DC motor to crank the engine for an auto start duration that is shorter than the cold start duration. In response to determining that the cold start duration or the auto start duration has expired, an engine controller activates the fuel delivery system to deliver fuel to the engine.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 28, 2021
    Inventors: Lei Hao, Wei Zeng, Chandra Namuduri, Sharon Xiaobin Li, Michael C. Zumbaugh
  • Publication number: 20210017943
    Abstract: An electric starter system is disclosed for use with an engine having a flywheel. The electric starter system includes a pinion gear and a solenoid device coupled to the pinion gear. The solenoid device is movable between a pre-engaged position when the pinion gear is moved into engagement with the flywheel and a disengaged position when the pinion gear is disengaged from the flywheel. A brushless starter motor is selectively connectable to the flywheel of the engine via the pinion gear during a requested engine start event. A latch mechanism is selectively engageable with the solenoid device. The latch mechanism is moveable between a latched position in which the solenoid device is mechanically held in the pre-engaged position and an unlatched position in which the solenoid device is released for movement to the disengaged position.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 21, 2021
    Inventors: Farzad Samie, Chunhao J. Lee, Lei Hao, Chandra S. Namuduri
  • Patent number: 10895237
    Abstract: An electric starter system is disclosed for use with an engine having a flywheel. The electric starter system includes a pinion gear and a solenoid device coupled to the pinion gear. The solenoid device is movable between a pre-engaged position when the pinion gear is moved into engagement with the flywheel and a disengaged position when the pinion gear is disengaged from the flywheel. A brushless starter motor is selectively connectable to the flywheel of the engine via the pinion gear during a requested engine start event. A latch mechanism is selectively engageable with the solenoid device. The latch mechanism is moveable between a latched position in which the solenoid device is mechanically held in the pre-engaged position and an unlatched position in which the solenoid device is released for movement to the disengaged position.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: January 19, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Farzad Samie, Chunhao J. Lee, Lei Hao, Chandra S. Namuduri
  • Patent number: 10886817
    Abstract: A starter assembly includes a partial planetary gear set connected to a pinion gear slidable along a first axis. The starter also includes a motor casing housing a brushless electric motor and having a first bearing. The motor includes multi-phase stator and rotor assemblies arranged inside the casing concentrically relative to the first axis. The rotor assembly has a rotor with a shaft supported by the first bearing and connected to a sun gear engaging the gear set, and a rotor position and speed sensor target. The starter additionally includes a motor end-cap for mating with and enclosing the motor casing and having a second bearing supporting the shaft. The starter also includes an electronics cover with a power connector for mating with the end-cap and housing an electronic commutator assembly. The commutator assembly includes power electronics, and control processor electronics arranged between the end-cap and the power electronics.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: January 5, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Lei Hao, Alexandru Rajala, Thomas W. Nehl
  • Patent number: 10854933
    Abstract: Presented are battery pack voltage-switching (“V-switch”) systems, methods for making/operating such systems, and multi-pack, electric-drive motor vehicles with battery pack V-switch capabilities. A method for controlling operation of a vehicle includes a vehicle controller receiving a voltage switch signal to change a voltage output of the vehicle's battery system. The vehicle controller determines if a speed of a traction motor is less than a calibrated base speed; if so, the controller transmits a pack isolation signal to a power inverter to electrically disconnect the traction battery packs from the traction motor. The vehicle controller determines if a bus current of a DC bus is less than a calibrated bus current threshold; if so, the controller transmits an open signal to open one or more pack contactor switches and a close signal to close one or more pack contactor switches thereby causing the vehicle battery system to output the second voltage.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: December 1, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Yue-Yun Wang, Chandra S. Namuduri, Suresh Gopalakrishnan, Thomas W. Nehl, Dongxu Li
  • Patent number: 10815954
    Abstract: An engine starter system includes a starter including a multi-phase brushless electric motor and an electronic commutator assembly. A controller includes an instruction set that is executable in response to a command to execute an engine starting event. Operation includes determining a desired starting profile, controlling the starter to engage a rotatable member of the engine, and monitoring the rotational speed of the electric motor via a rotor position sensing circuit. The starter inverter is dynamically controlled to control the electric motor to spin the rotatable member of the internal combustion engine responsive to the desired starting profile, including dynamically controlling the starter inverter to control the electric motor to control the spin of the engine responsive to the desired starting profile to prevent occurrence of an engine speed flare event during the engine starting event.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 27, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Suresh Gopalakrishnan, Lei Hao, Chandra S. Namuduri, Paul S. Lombardo, Jeffrey R. Aldrich, Chunhao J. Lee, Neeraj S. Shidore
  • Publication number: 20200274410
    Abstract: A fluid-cooled axial flux motor having a stator, a rotor disposed adjacent to the stator, and a rotor shaft rotationally fixed onto the rotor. The rotor shaft includes axial coolant passageway having an inlet and opposite outlet. The rotor includes coolant passageways extending radially from rotor shaft. The rotor coolant passageways include an inlet in fluid communication with the outlet of the axial coolant passageway and an outlet. The fluid-cooled axial flux motor further includes a coolant distribution header having an inlet in fluid communication with the outlet of the rotor coolant passageway, a coolant collection header having an inlet in fluid communication with the outlet of the coolant distribution header, and a collection header outlet. The outlet of the coolant distribution header is disposed above the stator and the inlet of the coolant collection header is disposed below the stator with respect to the direction of gravity.
    Type: Application
    Filed: May 30, 2019
    Publication date: August 27, 2020
    Inventors: Jian Yao, Yusheng Zou, Chengwu Duan, Zhen Gao, Lei Hao, Alireza Fatemi
  • Patent number: 10724491
    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: July 28, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Kenneth J. Shoemaker, Chunhao J. Lee, Lei Hao, Thomas W. Nehl, Suresh Gopalakrishnan
  • Publication number: 20200235440
    Abstract: Presented are battery pack voltage-switching (“V-switch”) systems, methods for making/operating such systems, and multi-pack, electric-drive motor vehicles with battery pack V-switch capabilities. A method for controlling operation of a vehicle includes a vehicle controller receiving a voltage switch signal to change a voltage output of the vehicle's battery system. The vehicle controller determines if a speed of a traction motor is less than a calibrated base speed; if so, the controller transmits a pack isolation signal to a power inverter to electrically disconnect the traction battery packs from the traction motor. The vehicle controller determines if a bus current of a DC bus is less than a calibrated bus current threshold; if so, the controller transmits an open signal to open one or more pack contactor switches and a close signal to close one or more pack contactor switches thereby causing the vehicle battery system to output the second voltage.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Lei Hao, Yue-Yun Wang, Chandra S. Namuduri, Suresh Gopalakrishnan, Thomas W. Nehl, Dongxu Li