Patents by Inventor Leo J. Lee

Leo J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962009
    Abstract: A high-performance electrochemically active sodium molten salt catholyte enables a dramatic reduction in molten sodium battery operating temperature from near 300° C. to less than 120° C. As an example, stable electrochemical cycling was demonstrated in a high voltage (3.65 V) sodium battery comprising a sodium iodide-gallium chloride (NaI—GaCl3) molten salt catholyte for over 8 months at 110° C. The combination of high voltage, stable cycling behavior, and practical current densities supported by a molten catholyte enables a new generation of transformative high performance, low temperature molten sodium batteries.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 16, 2024
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Erik D. Spoerke, Stephen J. Percival, Martha M. Gross, Rose Y. Lee, Leo J. Small
  • Patent number: 11887696
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 30, 2024
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Brendan Frey, Michael K. K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Publication number: 20210383890
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: July 7, 2021
    Publication date: December 9, 2021
    Inventors: Brendan FREY, Michael K. K. LEUNG, Andrew Thomas DELONG, Hui Yuan XIONG, Babak ALIPANAHI, Leo J. LEE, Hannes BRETSCHNEIDER
  • Publication number: 20190252041
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: November 20, 2018
    Publication date: August 15, 2019
    Inventors: Brendan Frey, Michael K.K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Patent number: 10185803
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: January 22, 2019
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Brendan Frey, Michael K. K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Publication number: 20160364522
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Brendan FREY, Michael K.K. LEUNG, Andrew Thomas DELONG, Hui Yuan XIONG, Babak ALIPANAHI, Leo J. LEE, Hannes BRETSCHNEIDER
  • Patent number: 7454336
    Abstract: A system and method that facilitate modeling unobserved speech dynamics based upon a hidden dynamic speech model in the form of segmental switching state space model that employs model parameters including those describing the unobserved speech dynamics and those describing the relationship between the unobserved speech dynamic vector and the observed acoustic feature vector is provided. The model parameters are modified based, at least in part, upon, a variational learning technique. In accordance with an aspect of the present invention, novel and powerful variational expectation maximization (EM) algorithm(s) for the segmental switching state space models used in speech applications, which are capable of capturing key internal (or hidden) dynamics of natural speech production, are provided. For example, modification of model parameters can be based upon an approximate mixture of Gaussian (MOG) posterior and/or based upon an approximate hidden Markov model (HMM) posterior using a variational technique.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: November 18, 2008
    Assignee: Microsoft Corporation
    Inventors: Hagai Attias, Li Deng, Leo J. Lee
  • Publication number: 20040260548
    Abstract: A system and method that facilitate modeling unobserved speech dynamics based upon a hidden dynamic speech model in the form of segmental switching state space model that employs model parameters including those describing the unobserved speech dynamics and those describing the relationship between the unobserved speech dynamic vector and the observed acoustic feature vector is provided. The model parameters are modified based, at least in part, upon, a variational learning technique. In accordance with an aspect of the present invention, novel and powerful variational expectation maximization (EM) algorithm(s) for the segmental switching state space models used in speech applications, which are capable of capturing key internal (or hidden) dynamics of natural speech production, are provided. For example, modification of model parameters can be based upon an approximate mixture of Gaussian (MOG) posterior and/or based upon an approximate hidden Markov model (HMM) posterior using a variational technique.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Hagai Attias, Li Deng, Leo J. Lee