Patents by Inventor Leonard Franklin Register, II

Leonard Franklin Register, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180323370
    Abstract: A magnetic solid state device is disclosed. The magnetic solid state device includes a substrate and a topological insulator deposited on top of the substrate. The magnetic solid state device also includes a first perpendicular magnetic anisotropy (PMA) bit having a reference PMA layer located on the topological insulator, and a second PMA bit having a free PMA layer located on the topological insulator. A gate contact is utilized to receive various predetermined voltages for controlling the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the reference PMA layer in the first PMA bit and the free PMA layer in the second PMA bit.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: LEONARD FRANKLIN REGISTER, II, BAHNIMAN GHOSH, RIK DEY, SANJAY KUMAR BANERJEE
  • Patent number: 10121962
    Abstract: A magnetic solid state device is disclosed. The magnetic solid state device includes a substrate and a topological insulator deposited on top of the substrate. The magnetic solid state device also includes a first perpendicular magnetic anisotropy (PMA) bit having a reference PMA layer located on the topological insulator, and a second PMA bit having a free PMA layer located on the topological insulator. A gate contact is utilized to receive various predetermined voltages for controlling the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the reference PMA layer in the first PMA bit and the free PMA layer in the second PMA bit.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 6, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Leonard Franklin Register, II, Bahniman Ghosh, Rik Dey, Sanjay Kumar Banerjee
  • Patent number: 9825218
    Abstract: A device or class of devices that provides a mechanism for controlling charge current flow in transistors that employs collective magnetic effects to overcome voltage limitations associated with single-particle thermionic emission as in conventional MOSFETs. Such a device may include two or more magnetic stacks with an easy-in-plane ferromagnetic film sandwiched between oppositely magnetically oriented perpendicular magnetization anisotropy (PMA) ferromagnets. Each stack includes two non-magnetic layers separating the easy-plane ferromagnetic film from the PMA layers. Charge current flow through one of these stacks controls the current-voltage negative differential resistance characteristics of the second stack through collective magnetic interactions. This can be exploited in a variety of digital logic gates consuming less energy than conventional CMOS integrated circuits.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 21, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Allan MacDonald, Leonard Franklin Register, II, Emanuel Tutuc, Inti Sodemann, Hua Chen, Xuehao Mou, Sanjay K. Banerjee
  • Publication number: 20170104151
    Abstract: A device or class of devices that provides a mechanism for controlling charge current flow in transistors that employs collective magnetic effects to overcome voltage limitations associated with single-particle thermionic emission as in conventional MOSFETs. Such a device may include two or more magnetic stacks with an easy-in-plane ferromagnetic film sandwiched between oppositely magnetically oriented perpendicular magnetization anisotropy (PMA) ferromagnets. Each stack includes two non-magnetic layers separating the easy-plane ferromagnetic film from the PMA layers. Charge current flow through one of these stacks controls the current-voltage negative differential resistance characteristics of the second stack through collective magnetic interactions. This can be exploited in a variety of digital logic gates consuming less energy than conventional CMOS integrated circuits.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 13, 2017
    Inventors: Sanjay K. Banerjee, Allan MacDonald, Leonard Franklin Register, II, Emanuel Tutuc, Inti Sodemann, Hua Chen, Xuehao Mou
  • Patent number: 8629427
    Abstract: A Topological INsulator-based field-effect transistor (TINFET) is disclosed. The TINFET includes a first and second gate dielectric layers separated by a topological insulator (TI) layer. A first gate contact is connected to the first gate dielectric layer on the surface that is opposite the TI layer. A second gate contact may be connected to the second gate dielectric layer on the surface that is opposite the TI layer. A first TI surface contact is connected to one surface of the TI layer, and a second TI surface contact is connected to the second surface of the TI layer.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: January 14, 2014
    Assignee: Texas A&M University
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Bhagawan R. Sahu, Priyamvada Jadaun, Jiwon Chang
  • Publication number: 20120273763
    Abstract: A Topological INsulator-based field-effect transistor (TINFET) is disclosed. The TINFET includes a first and second gate dielectric layers separated by a topological insulator (TI) layer. A first gate contact is connected to the first gate dielectric layer on the surface that is opposite the TI layer. A second gate contact may be connected to the second gate dielectric layer on the surface that is opposite the TI layer. A first TI surface contact is connected to one surface of the TI layer, and a second TI surface contact is connected to the second surface of the TI layer.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Bhagawan R. Sahu, Priyamvada Jadaun, Jiwon Chang
  • Patent number: 8263967
    Abstract: A bi-layer pseudo-spin field-effect transistor (BiSFET) is disclosed. The BiSFET includes a first and second conduction layers separated by a tunnel dielectric. The BiSFET transistor also includes a first gate separated from the first conduction layer by an insulating dielectric layer, and a second gate separated from the second conduction layer by an insulating layer. These conduction layers may be composed of graphene. The voltages applied to the first and/or second gates can control the peak current and associated voltage value for current flow between top and bottom conduction channels, and interlayer current voltage characteristic exhibiting negative differential resistance. BiSFETs may be used to make a variety of logic gates. A clocked power supply scheme may be used to facilitate BiSFET-based logic.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: September 11, 2012
    Assignee: Board of Regents, The University of Texas Systems
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Dharmendar Reddy Palle, Emanuel Tutuc
  • Publication number: 20120212257
    Abstract: A bi-layer pseudo-spin field-effect transistor (BiSFET) is disclosed. The BiSFET includes a first and second conduction layers separated by a tunnel dielectric. The BiSFET transistor also includes a first gate separated from the first conduction layer by an insulating dielectric layer, and a second gate separated from the second conduction layer by an insulating layer. These conduction layers may be composed of graphene. The voltages applied to the first and/or second gates can control the peak current and associated voltage value for current flow between top and bottom conduction channels, and interlayer current voltage characteristic exhibiting negative differential resistance. BiSFETs may be used to make a variety of logic gates. A clocked power supply scheme may be used to facilitate BiSFET-based logic.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 23, 2012
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Dharmendar Reddy Palle, Emanuel Tutuc
  • Patent number: 8188460
    Abstract: A bi-layer pseudo-spin field-effect transistor (BiSFET) is disclosed. The BiSFET includes a first and second conduction layers separated by a tunnel dielectric. The BiSFET transistor also includes a first gate separated from the first conduction layer by an insulating dielectric layer, and a second gate separated from the second conduction layer by an insulating layer. These conduction layers may be composed of graphene. The voltages applied to the first and/or second gates can control the peak current and associated voltage value for current flow between top and bottom conduction channels, and interlayer current voltage characteristic exhibiting negative differential resistance. BiSFETs may be used to make a variety of logic gates. A clocked power supply scheme may be used to facilitate BiSFET-based logic.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 29, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Dharmendar Reddy Palle, Emanuel Tutuc
  • Patent number: 8008649
    Abstract: A semiconductor device and method for fabricating a semiconductor device incorporating gate control over a resonant tunneling structure. The semiconductor device includes a source terminal, a gate terminal, a drain terminal, and a resonant tunneling structure located beneath or adjacent to the gate terminal, where the gate terminal controls an electrostatic potential drop through the resonant tunneling structure as well as controlling a potential within a portion of the conduction channel immediately beneath the gate terminal as in a MOSFET. The semiconductor device is fabricated by growing epitaxial layers of tunnel barriers and quantum wells, where a quantum well is formed between each set of two tunneling barriers. Additionally, the epitaxial layers of tunnel barriers and quantum wells are grown, etched and patterned to form a resonant tunneling structure. Further, the semiconductor device is grown, etched and patterned to form a gate, source and drain electrode.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 30, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventors: Leonard Franklin Register, II, Sanjay Banerjee
  • Publication number: 20100207101
    Abstract: A semiconductor device and method for fabricating a semiconductor device incorporating gate control over a resonant tunneling structure. The semiconductor device includes a source terminal, a gate terminal, a drain terminal, and a resonant tunneling structure located beneath or adjacent to the gate terminal, where the gate terminal controls an electrostatic potential drop through the resonant tunneling structure as well as controlling a potential within a portion of the conduction channel immediately beneath the gate terminal as in a MOSFET. The semiconductor device is fabricated by growing epitaxial layers of tunnel barriers and quantum wells, where a quantum well is formed between each set of two tunneling barriers. Additionally, the epitaxial layers of tunnel barriers and quantum wells are grown, etched and patterned to form a resonant tunneling structure. Further, the semiconductor device is grown, etched and patterned to form a gate, source and drain electrode.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: Board of Regents, The University of Texas System
    Inventors: Leonard Franklin Register, II, Sanjay Banerjee
  • Publication number: 20100127243
    Abstract: A bi-layer pseudo-spin field-effect transistor (BiSFET) is disclosed. The BiSFET includes a first and second conduction layers separated by a tunnel dielectric. The BiSFET transistor also includes a first gate separated from the first conduction layer by an insulating dielectric layer, and a second gate separated from the second conduction layer by an insulating layer. These conduction layers may be composed of graphene. The voltages applied to the first and/or second gates can control the peak current and associated voltage value for current flow between top and bottom conduction channels, and interlayer current voltage characteristic exhibiting negative differential resistance. BiSFETs may be used to make a variety of logic gates. A clocked power supply scheme may be used to facilitate BiSFET-based logic.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 27, 2010
    Applicant: The Board of Regents The University of Texas System
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Dharmendar Reddy Palle, Emmanuel Tutuc