Patents by Inventor Leonard N. Schiff

Leonard N. Schiff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7852800
    Abstract: Time-scattering of data is employed to reduce the interference effects, such as, error rate, between terminals disposed in nearby beams, or cells, of a communication system. A scattering schedule is determined, typically by a gateway, for a terminal. Scattering instructions, based at least in part on that scattering schedule, are provided to the terminal. The scattering instructions provide terminals with information suitable for controlling the temporal scattering of time slot data to be transmitted by the terminals so that interference impact of nearby out-of-beam terminals is reduced. Time-scattered data received by a receiver remote from the terminal is returned to the desired order by sorting the data in accordance with the scattering schedule to achieve a reversing of the scattering. Time-scattering may be applied to data moving in either or both of the forward and reverse directions of a communication system.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: December 14, 2010
    Assignee: Qualcomm Incorporated
    Inventors: Leonard N. Schiff, David S. Miller
  • Publication number: 20100061293
    Abstract: Communication diversity using a plurality of satellites is disclosed. The satellites can support multiple regions corresponding to multiple satellite beams. Each satellite can support all regions in the reverse direction and each satellite can be designated as a primary satellite for one of the multiple regions corresponding to one of the multiple satellite beams. Each satellite can receive from any of the regions reverse link signals broadcast by, for example, a mobile station. Each satellite can communicate the received reverse link signals to, for example, a base station or gateway where the signals can be combined to increase signal quality. A mobile station receives forward link signals from the primary satellite and monitors a signal quality from the primary satellite and from a secondary satellite. If the signal quality from the primary satellite drops below a threshold value, the communication signal is transferred to the secondary satellite.
    Type: Application
    Filed: November 18, 2009
    Publication date: March 11, 2010
    Applicant: QUALCOMM INCORPORATED
    Inventor: Leonard N. Schiff
  • Patent number: 7639646
    Abstract: Communication diversity using a plurality of satellites is disclosed. The satellites can support multiple regions corresponding to multiple satellite beams. Each satellite can support all regions in the reverse direction and each satellite can be designated as a primary satellite for one of the multiple regions corresponding to one of the multiple satellite beams. Each satellite can receive from any of the regions reverse link signals broadcast by, for example, a mobile station. Each satellite can communicate the received reverse link signals to, for example, a base station or gateway where the signals can be combined to increase signal quality. A mobile station receives forward link signals from the primary satellite and monitors a signal quality from the primary satellite and from a secondary satellite. If the signal quality from the primary satellite drops below a threshold value, the communication signal is transferred to the secondary satellite.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: December 29, 2009
    Assignee: Qualcomm Incorporated
    Inventor: Leonard N. Schiff
  • Patent number: 7633895
    Abstract: Orthogonal CDMA (OCDMA) in the return link of a satellite based communications system provides improved bandwidth efficiencies; increased ability to overcome channel degrading phenomenon; reduced transmission power; or various combinations thereof. By achieving code synchronization needed for advantageous use of OCDMA in the return link of a satellite based communication system, a plurality of terminals, each with a unique time slot/code channel assignment, may transmit concurrently, with the same, or lower, aggregate power as would be used by a single terminal using TDMA. Use of OCDMA in the return link allows one or more terminals, each in a common beam and assigned a common time slot, to transmit at a higher transmission power to overcome channel degradation effects. The ability to allow for higher transmission power for a particular terminal can increase the effective data rate for that terminal by enabling the use of a higher order modulation technique.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: December 15, 2009
    Assignee: Qualcomm Incorporated
    Inventors: Leonard N. Schiff, Ahmad Jalali
  • Publication number: 20090116543
    Abstract: Synchronization of satellite and terrestrial broadcasts in a shared frequency arrangement is use in order to facilitate simultaneous reception of the broadcasts. A delay value is adjusted based on a synchronization between a first terrestrial broadcast and a satellite broadcast, and a delay value for a second terrestrial broadcast is adjusted based on a synchronization between the second terrestrial broadcast, the first terrestrial broadcast and the satellite broadcast. The adjustment of the relative delay values provides an improved reception pattern based on receipt of a shared frequency communication from multiple sources by improving a signal quality factor within at least selected regions of the coverage areas in which the relative delay values permit synchronization.
    Type: Application
    Filed: November 2, 2007
    Publication date: May 7, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Leonard N. Schiff, Williams G. Ames
  • Publication number: 20090051589
    Abstract: A satellite communication system for providing communications between user terminals and gateways constituted with m primary satellites. In one embodiment, n back up satellites are also provided. Further, each satellite, primary or back-up, is equipped to project N/m beams onto and across an area in a loosely-packed array manner. M of the m primary and n back-up satellites collectively create N beam spots to cover the area. Moreover, each sub-area is covered by a beam spot separated from another sub-area covered by another beam spot by one beam width. Each satellite is also equipped to facilitate communication over 1 of m band of frequencies on one beam. AS a result, any of the m primary satellites may be efficiently replaced on demand by a selected one of the n back-up satellites. The gateways and user terminals are configured to communicate signals through or with both or either the primary and back-up satellites.
    Type: Application
    Filed: May 23, 2008
    Publication date: February 26, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Leonard N. Schiff, David S. Miller
  • Patent number: 7379758
    Abstract: A satellite communication system for providing communications between user terminals and gateways constituted with m primary satellites. In one embodiment, n back up satellites are also provided. Further, each satellite, primary or back-up, is equipped to project N/m beams onto and across an area in a loosely-packed array manner. M of the m primary and n back-up satellites collectively create N beam spots to cover the area. Moreover, each sub-area is covered by a beam spot separated from another sub-area covered by another beam spot by one beam width. Each satellite is also equipped to facilitate communication over 1 of m band of frequencies on one beam. As a result, any of the m primary satellites may be efficiently replaced on demand by a selected one of the n back-up satellites. The gateways and user terminals are configured to communicate signals through or with both or either the primary and back-up satellites.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: May 27, 2008
    Assignee: Qualcomm Incorporated
    Inventors: Leonard N. Schiff, David S. Miller
  • Patent number: 7333469
    Abstract: A method for compensating for the Doppler effect in a communication system where messages are transmitted at a low data rate to a user terminal that is inside a building. The method comprising acquiring a pilot signal prior to the user terminal entering the building; placing the user terminal into a deep paging mode prior to the user terminal entering the building; tracking Doppler as the user terminal proceeds into the building; and monitoring an auxiliary paging channel after activating said deep paging mode.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: February 19, 2008
    Assignee: Qualcomm Incorporated
    Inventor: Leonard N. Schiff
  • Publication number: 20040131028
    Abstract: A quality measure, such as a signal-to-noise ratio, of a signal arriving at a gateway for a return link is used to adjust a data rate for the link. The return link is transferred from a terminal to the gateway through a satellite, and shared by a number of user terminals at any given time, including the terminal for which the data rate is adjusted. The terminals sharing the link have a certain interference relationship. Adjusting a data rate for a message sent from one or more terminals through the return link in the presence of signal degradation or power loss does not appreciably change the interference relationship among the plurality of terminals.
    Type: Application
    Filed: July 22, 2003
    Publication date: July 8, 2004
    Inventors: Leonard N. Schiff, David S. Miller
  • Publication number: 20040106375
    Abstract: A satellite communication system for providing communications between user terminals and gateways constituted with m primary satellites. In one embodiment, n back up satellites are also provided. Further, each satellite, primary or back-up, is equipped to project N/m beams onto and across an area in a loosely-packed array manner. M of the m primary and n back-up satellites collectively create N beam spots to cover the area. Moreover, each sub-area is covered by a beam spot separated from another sub-area covered by another beam spot by one beam width. Each satellite is also equipped to facilitate communication over 1 of m band of frequencies on one beam. As a result, any of the m primary satellites may be efficiently replaced on demand by a selected one of the n back-up satellites. The gateways and user terminals are configured to communicate signals through or with both or either the primary and back-up satellites.
    Type: Application
    Filed: July 21, 2003
    Publication date: June 3, 2004
    Inventors: Leonard N. Schiff, David S. Miller
  • Publication number: 20040097192
    Abstract: A satellite includes a programmable facility including circuitry responsive to programmable control information. One or more filter parameters, or other forms of instructions for allocating channel capacity (i.e. bits/second/Hz), are received at the satellite in orbit to direct the programmable facility to separate particular sub-signals from an input signal. In one embodiment, the programmable facility can be programmed to change the allocation of channel capacity dedicated to the forward and return links based on the ratio forward and return traffic through a satellite. Changing the allocation of channel capacity may be achieved by changing the portions of the total allocated frequency bandwidth that are used for forward and return links. Alternatively, the changes may be made to the forward and/or return data rates, either alone or in combination with frequency bandwidth allocations.
    Type: Application
    Filed: June 23, 2003
    Publication date: May 20, 2004
    Inventor: Leonard N. Schiff
  • Patent number: 6714780
    Abstract: A method for reducing call dropping rates in a multi-beam communication system. The multi-beam communication system includes a user terminal, a gateway, and a plurality of beam sources, where each beam source projects a plurality of beams, and where a communication link between the user terminal and the gateway is established on one or more beams. The method according to the present invention relies on a messaging protocol between the gateway and the user terminal. Based on messages sent from the user terminal to the gateway, preferably on a preselected periodic basis, the gateway can determine the more desirable beam(s) for transmitting data or information to the user terminal. The messages sent from the user terminal to the gateway contain values representing beam strengths as measured at the user terminal. The gateway uses the user terminal measured beam strengths to select the beams that should be used for transmitting data or information to the user terminal.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: March 30, 2004
    Assignee: Qualcomm Incorporated
    Inventors: Franklin P. Antonio, Gene W. Marsh, Richard A. Stewart, Marie M. Bjerede, Ananthanarayanan Chockalingam, Arthur S. Kerns, Brian Butler, Matthew S. Grob, James T. Determan, Douglas Grover, Leonard N. Schiff, William G. Ames
  • Publication number: 20040052237
    Abstract: Time-scattering of data is employed to reduce the interference effects, such as, error rate, between terminals disposed in nearby beams, or cells, of a communication system. A scattering schedule is determined, typically by a gateway, for a terminal. Scattering instructions, based at least in part on that scattering schedule, are provided to the terminal. The scattering instructions provide terminals with information suitable for controlling the temporal scattering of time slot data to be transmitted by the terminals so that interference impact of nearby out-of-beam terminals is reduced. Time-scattered data received by a receiver remote from the terminal is returned to the desired order by sorting the data in accordance with the scattering schedule to achieve a reversing of the scattering. Time-scattering may be applied to data moving in either or both of the forward and reverse directions of a communication system.
    Type: Application
    Filed: June 23, 2003
    Publication date: March 18, 2004
    Inventor: Leonard N. Schiff
  • Publication number: 20040042389
    Abstract: A method for compensating for the Doppler effect in a communication system where messages are transmitted at a low data rate to a user terminal that is inside a building. The method comprising acquiring a pilot signal prior to the user terminal entering the building; placing the user terminal into a deep paging mode prior to the user terminal entering the building; tracking Doppler as the user terminal proceeds into the building; and monitoring an auxiliary paging channel after activating said deep paging mode.
    Type: Application
    Filed: June 23, 2003
    Publication date: March 4, 2004
    Inventor: Leonard N. Schiff
  • Publication number: 20040037238
    Abstract: Orthogonal CDMA (OCDMA) in the return link of a satellite based communications system provides improved bandwidth efficiencies; increased ability to overcome channel degrading phenomenon; reduced transmission power; or various combinations thereof. By achieving code synchronization needed for advantageous use of OCDMA in the return link of a satellite based communication system, a plurality of terminals, each with a unique time slot/code channel assignment, may transmit concurrently, with the same, or lower, aggregate power as would be used by a single terminal using TDMA. Use of OCDMA in the return link allows one or more terminals, each in a common beam and assigned a common time slot, to transmit at a higher transmission power to overcome channel degradation effects. The ability to allow for higher transmission power for a particular terminal can increase the effective data rate for that terminal by enabling the use of a higher order modulation technique.
    Type: Application
    Filed: May 1, 2003
    Publication date: February 26, 2004
    Inventors: Leonard N. Schiff, Ahmad Jalali
  • Patent number: 6671250
    Abstract: A method for deep paging in a communication system employing orthogonal channelizing codes, such as Walsh sequences, of predetermined length m, that does not require a high powered paging channel. The method includes the steps of generating a paging channel message which is combined with a Walsh sequence having a length greater than or equal to 2m, and transmitting the paging channel message at a data rate of less than 4800 bits per second (bps). By transmitting the paging channel message at a low data rate and integrating collected energy over a period longer by a factor on the order of 1000, the message is able to penetrate buildings and other structures or high attenuation environments, thereby allowing one to successfully page a user terminal that is inside such a structure or area. Preferably, the paging channel message is formed using an auxiliary Walsh sequence on the order of 65536 chips in length, and the data rate is less than 10 bps.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: December 30, 2003
    Assignee: Qualcomm Incorporated
    Inventor: Leonard N. Schiff
  • Patent number: 6549780
    Abstract: A handoff technique in which system users detect transitions in service between a current service area and an adjacent service area, and request a forward link channel in the new service area when a detected signal strength for the new service area exceeds predetermined threshold levels. The forward communications link in the current service area is maintained until the strength of the new service area signal reaches a certain level and appropriate channel quality is confirmed, as based on various known criteria. Typically, service area transitions are detected using the signal strength of pilot or paging signals associated with service areas, which are used to determine a relative signal strength of new service area signals. Pilot signal level adjustments used to counter roll-off effects are detected and compensated for in comparing signal levels.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: April 15, 2003
    Assignee: Qualcomm, Incorporated
    Inventors: Leonard N. Schiff, David S. Miller
  • Patent number: 6539200
    Abstract: An apparatus and method for paging a user terminal (UT) using a satellite communications system having a gateway and one or more satellites, wherein each satellite produces a plurality of beams and each beam includes a plurality of channels. The method of the present invention includes the step of recalling a location of the UT, wherein the recalled location corresponds to a location of the UT at a time t1. In one embodiment this is accomplished by performing a lookup in a table that includes location information for user terminals at different points in time. The method also includes the step of determining an area, based on the recalled location, within which the UT is assumed to be located at a time t2, where time t2 is later in time than time t1. The next step is to determine a time t3, where t3 is equal to or later in time than time t2, when the following two criteria are satisfied. First a satellite of the one or more satellites has an elevation angle between &thgr;1 and &thgr;2.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: March 25, 2003
    Assignee: Qualcomm, Incorporated
    Inventor: Leonard N. Schiff
  • Patent number: 6449463
    Abstract: An apparatus and method for using a variable loop gain in a double-loop power control system to control the power of a forward link signal sent by a gateway to a user terminal to compensate for fading in a wireless communications system. In one embodiment the invention includes the steps of detecting fast fading in the forward link signal and informing the gateway of the fast fading; and at the gateway, reducing the loop gain of the power control loop when fast fading is indicated. In another embodiment, the invention includes the steps of, at the gateway, detecting fast fading in a reverse link signal received from the user terminal and reducing the loop gain of the power control loop when fast fading is indicated.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: September 10, 2002
    Assignee: QUALCOMM, Incorporated
    Inventor: Leonard N. Schiff
  • Publication number: 20020111144
    Abstract: An apparatus and method for using a variable loop gain in a double-loop power control system to control the power of a forward link signal sent by a gateway to a user terminal to compensate for fading in a wireless communications system. In one embodiment the invention includes the steps of detecting fast fading in the forward link signal and informing the gateway of the fast fading; and at the gateway, reducing the loop gain of the power control loop when fast fading is indicated. In another embodiment, the invention includes the steps of, at the gateway, detecting fast fading in a reverse link signal received from the user terminal and reducing the loop gain of the power control loop when fast fading is indicated.
    Type: Application
    Filed: April 18, 2002
    Publication date: August 15, 2002
    Inventor: Leonard N. Schiff