Patents by Inventor Leonardo Gabriel Montilla

Leonardo Gabriel Montilla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240168397
    Abstract: Systems, apparatuses, and methods are provided for correcting the detected positions of alignment marks disposed on a substrate and aligning the substrate using the corrected data to ensure accurate exposure of one or more patterns on the substrate. An example method can include receiving measurement data indicative of an interference between light diffracted from a plurality of alignment marks disposed on a substrate or reflected from the substrate. The example method can further include determining substrate deformation data based on the measurement data. The example method can further include determining alignment mark deformation data based on the measurement data. The alignment mark deformation data can include alignment mark deformation spectral pattern data, alignment mark deformation amplitude data, and alignment mark deformation offset data.
    Type: Application
    Filed: March 21, 2022
    Publication date: May 23, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Joshua ADAMS, Leonardo Gabriel MONTILLA, Nick Franciscus Wilhelmus THISSEN, Leendert Jan KARSSEMEIJER, Igor Matheus Petronella AARTS, Zahrasadat DASTOURI
  • Patent number: 11016396
    Abstract: A method including illuminating a product test substrate with radiation from a component, wherein the product test substrate does not have a device pattern etched therein and yields a non-zero sensitivity when illuminated, the non-zero sensitivity representing a change in an optical response characteristic of the product test substrate with respect to a change in a characteristic of the radiation; measuring at least a part of the radiation redirected by the product test substrate to determine a parameter value; and taking an action with respect to the component based on the parameter value.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: May 25, 2021
    Assignee: ASML Holding N.V
    Inventors: Leonardo Gabriel Montilla, Krishanu Shome
  • Publication number: 20200073255
    Abstract: A method including illuminating a product test substrate with radiation from a component, wherein the product test substrate does not have a device pattern etched therein and yields a non-zero sensitivity when illuminated, the non-zero sensitivity representing a change in an optical response characteristic of the product test substrate with respect to a change in a characteristic of the radiation; measuring at least a part of the radiation redirected by the product test substrate to determine a parameter value; and taking an action with respect to the component based on the parameter value.
    Type: Application
    Filed: April 17, 2018
    Publication date: March 5, 2020
    Applicant: ASML Holding N.V.
    Inventors: Leonardo Gabriel MONTILLA, Krishanu SHOME
  • Patent number: 10241199
    Abstract: Devices are disclosed for obtaining data of a sample, particularly data capable of being processed to produce an image of a region of the sample. An exemplary device includes a light-beam source, an acoustic-wave source, an optical element, and an acoustic detector. The optical element is transmissive to a light beam produced by the light-beam source and reflective to acoustic waves produced by the acoustic-wave source. The optical element is situated to direct the transmitted light beam and reflected acoustic wave simultaneously along an optical axis to be incident at a situs in or on a sample to cause the sample to produce acoustic echoes from the incident acoustic waves while also producing photoacoustic waves from the incident light beam photoacoustically interacting with the situs. The acoustic detector is placed to receive and detect the acoustic echoes and the photoacoustic waves from the situs. The acoustic detector can comprise one or more hydrophones exploiting the acousto-electric effect.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: March 26, 2019
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Russell S. Witte, Leonardo Gabriel Montilla, Ragnar Olafsson, Charles M. Ingram, Zhaohui Wang, Robert A. Norwood, Charles Greenlee
  • Publication number: 20150226845
    Abstract: Devices are disclosed for obtaining data of a sample, particularly data capable of being processed to produce an image of a region of the sample. An exemplary device includes a light-beam source, an acoustic-wave source, an optical element, and an acoustic detector. The optical element is transmissive to a light beam produced by the light-beam source and reflective to acoustic waves produced by the acoustic-wave source. The optical element is situated to direct the transmitted light beam and reflected acoustic wave simultaneously along an optical axis to be incident at a situs in or on a sample to cause the sample to produce acoustic echoes from the incident acoustic waves while also producing photoacoustic waves from the incident light beam photoacoustically interacting with the situs. The acoustic detector is placed to receive and detect the acoustic echoes and the photoacoustic waves from the situs. The acoustic detector can comprise one or more hydrophones exploiting the acousto-electric effect.
    Type: Application
    Filed: November 4, 2014
    Publication date: August 13, 2015
    Inventors: Russell S. Witte, Leonardo Gabriel Montilla, Ragnar Olafsson, Charles M. Ingram, Zhaohui Wang, Robert A. Norwood, Charles Greenlee
  • Patent number: 8879352
    Abstract: Devices are disclosed for obtaining data of a sample, particularly data capable of being processed to produce an image of a region of the sample. An exemplary device includes a light-beam source, an acoustic-wave source, an optical element, and an acoustic detector. The optical element is transmissive to a light beam produced by the light-beam source and reflective to acoustic waves produced by the acoustic-wave source. The optical element is situated to direct the transmitted light beam and reflected acoustic wave simultaneously along an optical axis to be incident at a situs in or on a sample to cause the sample to produce acoustic echoes from the incident acoustic waves while also producing photoacoustic waves from the incident light beam photoacoustically interacting with the situs. The acoustic detector is placed to receive and detect the acoustic echoes and the photoacoustic waves from the situs. The acoustic detector can comprise one or more hydrophones exploiting the acousto-electric effect.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 4, 2014
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Russell S. Witte, Leonardo Gabriel Montilla, Ragnar Olafsson, Charles M. Ingram, Zhaohui Wang, Robert A. Norwood, Charles Greenlee
  • Publication number: 20130039147
    Abstract: Devices are disclosed for obtaining data of a sample, particularly data capable of being processed to produce an image of a region of the sample. An exemplary device includes a light-beam source, an acoustic-wave source, an optical element, and an acoustic detector. The optical element is transmissive to a light beam produced by the light-beam source and reflective to acoustic waves produced by the acoustic-wave source. The optical element is situated to direct the transmitted light beam and reflected acoustic wave simultaneously along an optical axis to be incident at a situs in or on a sample to cause the sample to produce acoustic echoes from the incident acoustic waves while also producing photoacoustic waves from the incident light beam photoacoustically interacting with the situs. The acoustic detector is placed to receive and detect the acoustic echoes and the photoacoustic waves from the situs. The acoustic detector can comprise one or more hydrophones exploiting the acousto-electric effect.
    Type: Application
    Filed: January 25, 2011
    Publication date: February 14, 2013
    Inventors: Russell S. Witte, Leonardo Gabriel Montilla, Ragnar Olafsson, Charles M. Ingram, Zhaohui Wang, Robert A. Norwood, Charles Greenlee