Patents by Inventor Leonid A. Neyman

Leonid A. Neyman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10763662
    Abstract: A two-terminal electronic fuse device involves two switches, four diodes, switch control circuitry, and a storage capacitor, connected in a particular topology. When AC current flows through the fuse, a charging current charges the storage capacitor. Energy stored in the storage capacitor is then used to power the switch control circuitry. If the voltage on the storage capacitor drops, then the switches are opened briefly and at the correct time. Opening the switches allows the charging current to flow. By opening the switches and charging the storage capacitor only at times of low current flow through the fuse, the disturbance of load current flowing through the fuse is minimized. If an overload current condition is detected, then the fuse has tripped and first and second switches are opened. If the capacitor does not need charging and there is no overload condition, then the switches remain closed.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 1, 2020
    Assignee: Littelfuse, Inc.
    Inventor: Leonid A. Neyman
  • Patent number: 10714925
    Abstract: A two-terminal electronic fuse device involves two switches, four diodes, switch control circuitry, and a storage capacitor, connected in a particular topology. When AC current flows through the fuse, a charging current charges the storage capacitor. Energy stored in the storage capacitor is then used to power the switch control circuitry. If the voltage on the storage capacitor drops, then the switches are opened briefly and at the correct time. Opening the switches allows the charging current to flow. By opening the switches and charging the storage capacitor only at times of low current flow through the fuse, the disturbance of load current flowing through the fuse is minimized. If an overload current condition is detected, then the fuse has tripped and first and second switches are opened. If the capacitor does not need charging and there is no overload condition, then the switches remain closed.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 14, 2020
    Assignee: Littelfuse, Inc.
    Inventor: Leonid A. Neyman
  • Patent number: 10536145
    Abstract: A gate driver integrated circuit drives an output signal onto its output terminal and onto the gate of a power transistor. In a turn-on episode, a digital input signal transitions to a digital logic high level. In response, the gate driver integrated circuit couples the output terminal to a positive supply voltage terminal, thereby driving a positive voltage onto the gate of the power transistor. In response to a high-to-low transition of the digital input signal, the driver drives a negative voltage onto the output terminal and power transistor gate for a short self-timed period of time, and then couples the output terminal to a ground terminal, thereby driving the output terminal and power transistor gate up to ground potential. The output terminal and power transistor gate are then held at ground potential in anticipation of the next turn-on episode of the power transistor.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: January 14, 2020
    Assignee: LITTELFUSE, INC.
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Patent number: 10439483
    Abstract: In a switching converter having an inductive load, a current may flow through the body diode of a transistor even though the gate of the transistor is being controlled to keep the transistor off. Then when the other transistor of the switch leg is turned on, a reverse recovery current flows in the reverse direction through the body diode. To reduce switching losses associated with such current flows, a gate driver integrated circuit detects when current flow through the body diode rises above a threshold current. The gate driver integrated circuit then controls the transistor to turn on. Then when the other transistor of the switch leg is made to turn on, the gate driver first turns the transistor off. When the gate-to-source voltage of the turning off transistor drops below a threshold voltage, then the gate driver integrated circuit allows and controls the other transistor to turn on.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 8, 2019
    Assignee: Littelfuse, Inc.
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman, Md Abdus Sattar, Vladimir Tsukanov
  • Publication number: 20190260281
    Abstract: In a switching converter having an inductive load, a current may flow through the body diode of a transistor even though the gate of the transistor is being controlled to keep the transistor off. Then when the other transistor of the switch leg is turned on, a reverse recovery current flows in the reverse direction through the body diode. To reduce switching losses associated with such current flows, a gate driver integrated circuit detects when current flow through the body diode rises above a threshold current. The gate driver integrated circuit then controls the transistor to turn on. Then when the other transistor of the switch leg is made to turn on, the gate driver first turns the transistor off. When the gate-to-source voltage of the turning off transistor drops below a threshold voltage, then the gate driver integrated circuit allows and controls the other transistor to turn on.
    Type: Application
    Filed: October 2, 2018
    Publication date: August 22, 2019
    Applicant: Littelfuse, Inc.
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman, Md Abdus Sattar, Vladimir Tsukanov
  • Publication number: 20190109453
    Abstract: A two-terminal electronic fuse device involves two switches, four diodes, switch control circuitry, and a storage capacitor, connected in a particular topology. When AC current flows through the fuse, a charging current charges the storage capacitor. Energy stored in the storage capacitor is then used to power the switch control circuitry. If the voltage on the storage capacitor drops, then the switches are opened briefly and at the correct time. Opening the switches allows the charging current to flow. By opening the switches and charging the storage capacitor only at times of low current flow through the fuse, the disturbance of load current flowing through the fuse is minimized. If an overload current condition is detected, then the fuse has tripped and first and second switches are opened. If the capacitor does not need charging and there is no overload condition, then the switches remain closed.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 11, 2019
    Inventor: Leonid A. Neyman
  • Publication number: 20190109454
    Abstract: A two-terminal electronic fuse device involves two switches, four diodes, switch control circuitry, and a storage capacitor, connected in a particular topology. When AC current flows through the fuse, a charging current charges the storage capacitor. Energy stored in the storage capacitor is then used to power the switch control circuitry. If the voltage on the storage capacitor drops, then the switches are opened briefly and at the correct time. Opening the switches allows the charging current to flow. By opening the switches and charging the storage capacitor only at times of low current flow through the fuse, the disturbance of load current flowing through the fuse is minimized. If an overload current condition is detected, then the fuse has tripped and first and second switches are opened. If the capacitor does not need charging and there is no overload condition, then the switches remain closed.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 11, 2019
    Applicant: IXYS, LLC
    Inventor: Leonid A. Neyman
  • Publication number: 20180375518
    Abstract: A gate driver integrated circuit drives an output signal onto its output terminal and onto the gate of a power transistor. In a turn-on episode, a digital input signal transitions to a digital logic high level. In response, the gate driver integrated circuit couples the output terminal to a positive supply voltage terminal, thereby driving a positive voltage onto the gate of the power transistor. In response to a high-to-low transition of the digital input signal, the driver drives a negative voltage onto the output terminal and power transistor gate for a short self-timed period of time, and then couples the output terminal to a ground terminal, thereby driving the output terminal and power transistor gate up to ground potential. The output terminal and power transistor gate are then held at ground potential in anticipation of the next turn-on episode of the power transistor.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Patent number: 10090751
    Abstract: In a switching converter having an inductive load, a current may flow through the body diode of a transistor even though the gate of the transistor is being controlled to keep the transistor off. Then when the other transistor of the switch leg is turned on, a reverse recovery current flows in the reverse direction through the body diode. To reduce switching losses associated with such current flows, a gate driver integrated circuit detects when current flow through the body diode rises above a threshold current. The gate driver integrated circuit then controls the transistor to turn on. Then when the other transistor of the switch leg is made to turn on, the gate driver first turns the transistor off. When the gate-to-source voltage of the turning off transistor drops below a threshold voltage, then the gate driver integrated circuit allows and controls the other transistor to turn on.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 2, 2018
    Assignee: IXYS, LLC
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman, Md Abdus Sattar, Vladimir Tsukanov
  • Patent number: 10069485
    Abstract: A gate driver integrated circuit drives an output signal onto its output terminal and onto the gate of a power transistor. In a turn-on episode, a digital input signal transitions to a digital logic high level. In response, the gate driver integrated circuit couples the output terminal to a positive supply voltage terminal, thereby driving a positive voltage onto the gate of the power transistor. In response to a high-to-low transition of the digital input signal, the driver drives a negative voltage onto the output terminal and power transistor gate for a short self-timed period of time, and then couples the output terminal to a ground terminal, thereby driving the output terminal and power transistor gate up to ground potential. The output terminal and power transistor gate are then held at ground potential in anticipation of the next turn-on episode of the power transistor.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: September 4, 2018
    Assignee: IXYS, LLC
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Publication number: 20180219532
    Abstract: A gate driver integrated circuit drives an output signal onto its output terminal and onto the gate of a power transistor. In a turn-on episode, a digital input signal transitions to a digital logic high level. In response, the gate driver integrated circuit couples the output terminal to a positive supply voltage terminal, thereby driving a positive voltage onto the gate of the power transistor. In response to a high-to-low transition of the digital input signal, the driver drives a negative voltage onto the output terminal and power transistor gate for a short self-timed period of time, and then couples the output terminal to a ground terminal, thereby driving the output terminal and power transistor gate up to ground potential. The output terminal and power transistor gate are then held at ground potential in anticipation of the next turn-on episode of the power transistor.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 2, 2018
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Patent number: 9705417
    Abstract: A rectifier includes a larger Field Effect Transistor (FET1) and a smaller FET (FET2). A sense resistor is in series with FET2's body diode between a cathode terminal and an anode terminal. If the cathode terminal voltage is greater than the voltage on the anode terminal, then body diodes of FETs are reverse biased, the FETs are controlled to be off, and there is no current flow through the rectifier. If, however, the voltage on the anode terminal becomes positive with respect to the cathode terminal, then the body diode of FET2 starts to conduct and there is a voltage drop across the sense resistor. A comparator detects this condition and turns both FETs on. The rectifier is then conductive, so current can flow from the anode terminal, through the larger FET1, and to the cathode terminal, with a small forward voltage drop and without passing across the sense resistor.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: July 11, 2017
    Assignee: IXYS Corporation
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Publication number: 20170155339
    Abstract: A rectifier includes a larger Field Effect Transistor (FET1) and a smaller FET (FET2). A sense resistor is in series with FET2's body diode between a cathode terminal and an anode terminal. If the cathode terminal voltage is greater than the voltage on the anode terminal, then body diodes of FETs are reverse biased, the FETs are controlled to be off, and there is no current flow through the rectifier. If, however, the voltage on the anode terminal becomes positive with respect to the cathode terminal, then the body diode of FET2 starts to conduct and there is a voltage drop across the sense resistor. A comparator detects this condition and turns both FETs on. The rectifier is then conductive, so current can flow from the anode terminal, through the larger FET1, and to the cathode terminal, with a small forward voltage drop and without passing across the sense resistor.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: Anatoliy V. Tsyrganovich, Leonid A. Neyman
  • Patent number: 9571003
    Abstract: Within a non-isolated and efficient AC-to-DC power supply circuit: 1) a dep-FET is turned off to decouple an output voltage VO node from a VR node when a rectifier output signal VR on the VR node is greater than a first predetermined voltage VP and, 2) the dep-FET is enabled to be turned on so that a constant charging current flows from the VR node and onto the VO node when VR is less than VP (provided that VO is less than a second predetermined voltage VO(MAX) and provided that VR is adequately greater than VO). To speed turn off and on of the dep-FET, gate charge of the dep-FET is removed and is stored in a second capacitor when the dep-FET is to be turned off, and charge from the second capacitor is moved back onto the gate of the dep-FET when the dep-FET is to be turned on.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 14, 2017
    Assignee: IXYS Corporation
    Inventor: Leonid A. Neyman
  • Patent number: 9225260
    Abstract: A power supply circuit includes a rectifier, a charging circuit, and a storage capacitor. An AC signal is rectified by the rectifier thereby generating a rectified signal VR between a VR node and a GND node. The capacitor is coupled between an output voltage VO node and the GND node. If VR is greater than a first predetermined voltage VP then the VO node is decoupled from the VR node. If VR is below VP then the charging circuit supplies a substantially constant charging current from the VR node, through the charging circuit, to the VO node, and to the capacitor, provided that VO on the capacitor is below a second predetermined voltage VO(MAX) and provided that VR is adequately high with respect to VO. Due to the charging current, the voltage VO on the storage capacitor is restored to the desired second predetermined voltage.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: December 29, 2015
    Assignee: IXYS Corporation
    Inventor: Leonid A. Neyman
  • Publication number: 20150236613
    Abstract: Within a non-isolated and efficient AC-to-DC power supply circuit: 1) a dep-FET is turned off to decouple an output voltage VO node from a VR node when a rectifier output signal VR on the VR node is greater than a first predetermined voltage VP and, 2) the dep-FET is enabled to be turned on so that a constant charging current flows from the VR node and onto the VO node when VR is less than VP (provided that VO is less than a second predetermined voltage VO(MAX) and provided that VR is adequately greater than VO). To speed turn off and on of the dep-FET, gate charge of the dep-FET is removed and is stored in a second capacitor when the dep-FET is to be turned off, and charge from the second capacitor is moved back onto the gate of the dep-FET when the dep-FET is to be turned on.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Inventor: Leonid A. Neyman
  • Patent number: 9089025
    Abstract: A system for communicating with a host using control signals over a 1-wire interface is disclosed. The system includes a driver coupled to the host by the 1-wire interface. Control signals are transmitted from the host to the driver for decoding by the driver controller. The control signals are pulse width modulation format signals which are interpreted by the driver as binary encoded command mode signals or analog encoded command mode signals, depending upon when the signals are received in relation to a preamble pulse and a post-amble pulse.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: July 21, 2015
    Assignee: IXYS Corporation
    Inventors: Leonid A. Neyman, Allan Ming-Lun Lin
  • Patent number: 9054587
    Abstract: In a steady state operation mode, a charging circuit of a non-isolated AC-to-DC converter decouples an output voltage VO node from a VR node when the rectifier output signal VR on the VR node is greater than a first predetermined voltage VP and, 2) supplies a charging current from the VR node and onto the VO node when VR is less than VP provided that an output voltage VO on the VO node is less than a second predetermined voltage VO(MAX) and provided that VR is greater than VO. In an initial power up operation mode, the maximum limit value of the charging current is smaller than it is during steady state operation. Due to the reduced charging currents employed during initial power up operation, less noise is injected back to the AC source and EMI filters are not required between the rectifier of the converter and the AC source.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: June 9, 2015
    Assignee: IXYS Corporation
    Inventor: Leonid A. Neyman
  • Publication number: 20140126258
    Abstract: In a steady state operation mode, a charging circuit of a non-isolated AC-to-DC converter decouples an output voltage VO node from a VR node when the rectifier output signal VR on the VR node is greater than a first predetermined voltage VP and, 2) supplies a charging current from the VR node and onto the VO node when VR is less than VP provided that an output voltage VO on the VO node is less than a second predetermined voltage VO(MAX) and provided that VR is greater than VO. In an initial power up operation mode, the maximum limit value of the charging current is smaller than it is during steady state operation. Due to the reduced charging currents employed during initial power up operation, less noise is injected back to the AC source and EMI filters are not required between the rectifier of the converter and the AC source.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: IXYS Corporation
    Inventor: Leonid A. Neyman
  • Publication number: 20140043878
    Abstract: A power supply circuit includes a rectifier, a charging circuit, and a storage capacitor. An AC signal is rectified by the rectifier thereby generating a rectified signal VR between a VR node and a GND node. The capacitor is coupled between an output voltage VO node and the GND node. If VR is greater than a first predetermined voltage VP then the VO node is decoupled from the VR node. If VR is below VP then the charging circuit supplies a substantially constant charging current from the VR node, through the charging circuit, to the VO node, and to the capacitor, provided that VO on the capacitor is below a second predetermined voltage VO(MAX) and provided that VR is adequately high with respect to VO. Due to the charging current, the voltage VO on the storage capacitor is restored to the desired second predetermined voltage.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Applicant: IXYS Corporation
    Inventor: Leonid A. Neyman