Patents by Inventor Leonid Dorf

Leonid Dorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190228952
    Abstract: Embodiments of the present disclosure generally relate to methods and related process equipment for forming structures on substrates, such as etching high aspect ratio structures within one or more layers formed over a substrate. The methods and related equipment described herein can improve the formation of the structures on substrates by controlling the curvature of the plasma-sheath boundary near the periphery of the substrate, for example, by generating a substantially flat plasma-sheath boundary over the entire substrate (i.e., center to edge). The methods and related equipment described below can provide control over the curvature of the plasma-sheath boundary, including generation of the flat plasma-sheath boundary by applying RF power to an edge ring surrounding the substrate using a separate and independent RF power source.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 25, 2019
    Inventors: Leonid DORF, Anurag Kumar MISHRA, Olivier LUERE, Rajinder DHINDSA, James ROGERS, Denis M. KOOSAU, Sunil SRINIVASAN
  • Patent number: 10312048
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 4, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Hugh Rogers
  • Publication number: 20190085467
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber having a ceiling and a sidewall and a workpiece support facing the ceiling and defining a processing region, and a pair of concentric independently excited RF coil antennas overlying the ceiling and a side RF coil concentric with the side wall and facing the side wall below the ceiling, and being excited independently.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Jr., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Patent number: 10131994
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber having a ceiling and a sidewall and a workpiece support facing the ceiling and defining a processing region, and a pair of concentric independently excited RF coil antennas overlying the ceiling and a side RF coil concentric with the side wall and facing the side wall below the ceiling, and being excited independently.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: November 20, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Jr., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Publication number: 20180315583
    Abstract: Embodiments described herein generally related to a substrate processing apparatus. In one embodiment, a process kit for a substrate processing chamber disclosed herein. The process kit includes an edge ring having a top surface and a bottom surface. An adjustable tuning ring is positioned beneath the bottom surface of the edge ring. The adjustable tuning ring has an upper surface and a lower surface. The lower surface is configured to interface with an actuating mechanism configured to move the adjustable tuning ring relative to the edge ring.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 1, 2018
    Inventors: Olivier LUERE, Leonid DORF, Rajinder DHINDSA, Sunil SRINIVASAN, Denis M. KOOSAU, James ROGERS
  • Patent number: 10103010
    Abstract: Embodiments described herein generally related to a substrate processing apparatus. In one embodiment, a process kit for a substrate processing chamber disclosed herein. The process kit includes a first ring having a top surface and a bottom surface, an adjustable tuning ring having a top surface and a bottom surface, and an actuating mechanism. The bottom surface is supported by a substrate support member. The bottom surface at least partially extends beneath a substrate supported by the substrate support member. The adjustable tuning ring is positioned beneath the first ring. The top surface of the adjustable tuning ring and the first ring define an adjustable gap. The actuating mechanism is interfaced with the bottom surface of the adjustable tuning ring. The actuating mechanism is configured to alter the adjustable gap defined between the bottom surface of the first ring and the top surface of the adjustable tuning ring.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: October 16, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Olivier Luere, Leonid Dorf, Rajinder Dhindsa, Sunil Srinivasan, Denis M. Koosau, James Rogers
  • Publication number: 20180261429
    Abstract: A reactor with an overhead electron beam source is capable of generating an ion-ion plasma for performing an atomic layer etch process.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Kenneth S. Collins, Kartik Ramaswamy, James D. Carducci, Shahid Rauf, Leonid Dorf, Yang Yang
  • Publication number: 20180233334
    Abstract: Embodiments described herein generally related to a substrate processing apparatus. In one embodiment, a process kit for a substrate processing chamber disclosed herein. The process kit includes a first ring having a top surface and a bottom surface, an adjustable tuning ring having a top surface and a bottom surface, and an actuating mechanism. The bottom surface is supported by a substrate support member. The bottom surface at least partially extends beneath a substrate supported by the substrate support member. The adjustable tuning ring is positioned beneath the first ring. The top surface of the adjustable tuning ring and the first ring define an adjustable gap. The actuating mechanism is interfaced with the bottom surface of the adjustable tuning ring. The actuating mechanism is configured to alter the adjustable gap defined between the bottom surface of the first ring and the top surface of the adjustable tuning ring.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Olivier LUERE, Leonid DORF, Rajinder DHINDSA, Sunil SRINIVASAN, Denis M. KOOSAU, James ROGERS
  • Publication number: 20180226225
    Abstract: Systems and methods for tunable workpiece biasing in a plasma reactor are provided herein. In some embodiments, a system includes: a plasma chamber that performs plasma processing on a workpiece, a first pulsed voltage source, coupled directly to a workpiece, a second pulsed voltage source, coupled capacitively to the workpiece, and a biasing controller comprising one or more processors, and memory, wherein the memory comprises a set of computer instructions that when executed by the one or more processors, independently controls the first pulsed voltage source and the second pulsed voltage source based on one or more parameters of the first pulsed voltage source and the second pulsed voltage source in order to tailor ion energy distribution of the flux of ions directed to the workpiece.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 9, 2018
    Inventors: TRAVIS KOH, PHILIP ALLAN KRAUS, LEONID DORF, PRABU GOPALRAJA
  • Publication number: 20180218933
    Abstract: Embodiments described herein generally related to a substrate processing apparatus. In one embodiment, a process kit for a substrate processing chamber disclosed herein. The process kit includes a ring having a first ring component and a second ring component, an adjustable tuning ring, and an actuating mechanism. The first ring component is interfaced with the second ring component such that the second ring component is movable relative to the first ring component forming a gap therebetween. The adjustable tuning ring is positioned beneath the ring and contacts a bottom surface of the second ring component. A top surface of the adjustable tuning ring contacts the second ring component. The actuating mechanism is interfaced with the bottom surface of the adjustable tuning ring. The actuating mechanism is configured to actuate the adjustable tuning ring such that the gap between the first ring component and the second ring component varies.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: Olivier LUERE, Leonid DORF, Sunil SRINIVASAN, Rajinder DHINDSA, James ROGERS, Denis M. KOOSAU
  • Publication number: 20180166249
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Leonid DORF, Travis KOH, Olivier LUERE, Olivier JOUBERT, Philip A. KRAUS, Rajinder DHINDSA, JAMES HUGH ROGERS
  • Patent number: 9947517
    Abstract: Embodiments described herein generally related to a substrate processing apparatus. In one embodiment, a process kit for a substrate processing chamber disclosed herein. The process kit includes a first ring having a top surface and a bottom surface, an adjustable tuning ring having a top surface and a bottom surface, and an actuating mechanism. The bottom surface is supported by a substrate support member. The bottom surface at least partially extends beneath a substrate supported by the substrate support member. The adjustable tuning ring is positioned beneath the first ring. The top surface of the adjustable tuning ring and the first ring define an adjustable gap. The actuating mechanism is interfaced with the bottom surface of the adjustable tuning ring. The actuating mechanism is configured to alter the adjustable gap defined between the bottom surface of the first ring and the top surface of the adjustable tuning ring.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: April 17, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Olivier Luere, Leonid Dorf, Rajinder Dhindsa, Sunil Srinivasan, Denis M. Koosau, James Rogers
  • Publication number: 20180053631
    Abstract: The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 22, 2018
    Inventors: Leonid Dorf, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, James D. Carducci, Hamid Tavassoli, Olga Regelman, Ying Zhang
  • Publication number: 20180053630
    Abstract: The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 22, 2018
    Inventors: Kartik Ramaswamy, Igor Markovsky, Zhijang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
  • Patent number: 9896769
    Abstract: A plasma reactor enclosure has a metallic portion and a dielectric portion of plural dielectric windows supported on the metallic portion, each of the dielectric windows extending around an axis of symmetry. Plural concentric coil antennas are disposed on an external side of the enclosure, respective ones of the coil antennas facing respective ones of the dielectric windows.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: February 20, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Jr., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Publication number: 20170358431
    Abstract: Systems and methods for controlling a voltage waveform at a substrate during plasma processing include applying a shaped pulse bias waveform to a substrate support, the substrate support including an electrostatic chuck, a chucking pole, a substrate support surface and an electrode separated from the substrate support surface by a layer of dielectric material. The systems and methods further include capturing a voltage representative of a voltage at a substrate positioned on the substrate support surface and iteratively adjusting the shaped pulse bias waveform based on the captured signal. In a plasma processing system a thickness and a composition of a layer of dielectric material separating the electrode and the substrate support surface can be selected such that a capacitance between the electrode and the substrate support surface is at least an order of magnitude greater than a capacitance between the substrate support surface and a plasma surface.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventors: LEONID DORF, JAMES HUGH ROGERS, OLIVIER LUERE, TRAVIS KOH, RAJINDER DHINDSA, SUNIL SRINIVASAN
  • Publication number: 20170350018
    Abstract: A plasma reactor enclosure has a metallic portion and a dielectric portion of plural dielectric windows supported on the metallic portion, each of the dielectric windows extending around an axis of symmetry. Plural concentric coil antennas are disposed on an external side of the enclosure, respective ones of the coil antennas facing respective ones of the dielectric windows.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Publication number: 20170350017
    Abstract: A plasma reactor has an overhead multiple coil inductive plasma source with symmetric RF feeds and a symmetrical chamber exhaust with plural struts through the exhaust region providing access to a confined workpiece support. A grid may be included for masking spatial effects of the struts from the processing region.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, JR., Ankur Agarwal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Patent number: 9824862
    Abstract: The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: November 21, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
  • Patent number: 9799491
    Abstract: The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Leonid Dorf, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, James D. Carducci, Hamid Tavassoli, Olga Regelman, Ying Zhang