Patents by Inventor Leroy Clavenna

Leroy Clavenna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8470097
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?,and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A Greaney, Thomas Bruno, Ian A Cody, Trikur A Ramanarayanan, LeRoy A Clavenna
  • Patent number: 7862224
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: January 4, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Limin Song, Leroy Clavenna, Mohsen S. Yeganeh, H. Alan Wolf, Glen B Brons, Wayne J. York, Ian A. Cody
  • Publication number: 20100193159
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Limin SONG, LeRoy Clavenna, Ian A. Cody, Mohsen S. Yeganeh, H. Alan Wolf, Glen B. Brons, Wayne J. York
  • Patent number: 7726871
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 1, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Limin Song, Leroy Clavenna, Ian A. Cody, Mohsen S. Yeganeh, Alan H. Wolf, Glen B. Brons, Wayne J. York
  • Publication number: 20080149308
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Limin Song, LeRoy Clavenna, Ian A. Cody, Mohsen S, Yeganeh, H. Alan Wolf, Glen B. Brons, Wayne J. York
  • Publication number: 20080073063
    Abstract: A method for reducing the formation of deposits on the inner walls of a tubular heat exchanger through which a petroleum-based liquid is flowing comprises applying one of fluid pressure pulsations to the liquid flowing through the tubes of the exchanger and vibration to the heat exchanger to effect a reduction of the viscous boundary layer adjacent the inner walls of the tubular heat exchange surfaces. Reduction of the viscous boundary layer at the tube walls not only reduces the incidence of fouling with its consequential beneficial effect on equipment life but it also has the desirable effect of promoting heat transfer from the tube wall to the liquid in the tubes. Fouling and corrosion are further reduced by the use of a coating on the inner wall surfaces of the exchanger tubes.
    Type: Application
    Filed: May 24, 2007
    Publication date: March 27, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: LeRoy Clavenna, Ian Cody, Ashley Cooper, Steve Colgrove, Hugh Huffman, Julio Lobo, Limin Song, H. Wolf, Glen Brons, George Lutz, Mohsen Yeganeh
  • Publication number: 20070178322
    Abstract: A heat transfer component that is resistant to both corrosion and fouling is disclosed having a heat exchange surface formed from a silicon containing steel composition including an alloy and a non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, 0, S and mixtures thereof. The non-metallic film comprises sulfide, oxide, carbide, nitride, oxysulfide, oxycarbide, oxynitride and mixtures thereof. The surface roughness of the heat transfer component is less than 40 micro inches.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 2, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark Greaney, Thomas Bruno, Ian Cody, Trikur Ramanarayanan, LeRoy Clavenna
  • Publication number: 20070144631
    Abstract: A method and apparatus for reducing fouling associated with a process stream in a heat transfer component. The method and apparatus include the use of one of a vibration producing device to impart a vibrational force to desired component and a pulsation producing device for apply pressure pulsations to the process stream. The heat transfer component has at least one surface having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Application
    Filed: December 20, 2006
    Publication date: June 28, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: LeRoy Clavenna, Ian Cody, Ashley Cooper, Steve Colgrove, Mark Greaney, Thomas Bruno, Limin Song, H. Wolf, Glen Brons, ChangMin Chun, Mohsen Yeganeh
  • Publication number: 20060182888
    Abstract: This invention relates to a method for making a carbon steel surface more resistant to fouling and corrosion by subjecting a cleaned carbon steel surface to heating in an oxygen-containing atmosphere followed by exposure of the heated surface to sulfur-containing feeds such that a dense layer of Fe1-x S where X is a number from 0.2 to 0.0 is formed on the steel surface, said dense layer having a thickness of from 0.5 to 200 microns.
    Type: Application
    Filed: December 15, 2005
    Publication date: August 17, 2006
    Inventors: Ian Cody, Thomas Bruno, Hyung Woo, H. Wolf, Glen Brons, Steve Colgrove, LeRoy Clavenna
  • Patent number: 5597474
    Abstract: The present invention relates to an integrated fluid coking/hydrogen production process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone of the reactor. Methane and steam are introduced into the stream of hot solids passing from the gasifier to the scrubbing zone. The hot particles act to catalyze the conversion of methane to carbon monoxide and hydrogen in the presence of steam.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: January 28, 1997
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis, LeRoy Clavenna