Patents by Inventor Leslie E. Wade

Leslie E. Wade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7518014
    Abstract: The present invention relates to a method of producing a catalyst or pre-catalyst suitable for assisting in the production of alkenyl alkanoates. The method includes contacting a modifier precursor to a support material to form a modified support material. One or more catalytic component precursors (palladium or gold) may be contacted to the modified support material. The atomic ratio of gold to palladium is preferably in the range of about 0.3 to about 0.90. The support materials with the catalytic component may then be reduced using a reducing environment. A composition for catalyzing the production of an alkenyl alkanoates including a modified support material with palladium and gold is also included within the invention. Catalysts of the present invention may be used to produce alkenyl alkanoates in general and vinyl acetate in particular and are useful to produce low EA/VA ratios while maintaining or improving CO2 selectivity.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: April 14, 2009
    Assignee: Celanese International Corp.
    Inventors: Barbara Kimmich, Leslie E. Wade, Tao Wang, André Harmen Sijpkes, Roelandus Hendrikus Wilhelmus Moonen
  • Publication number: 20080153692
    Abstract: The present invention relates to a method of producing a catalyst or pre-catalyst suitable for assisting in the production of alkenyl alkanoates. The method includes contacting a modifier precursor to a support material to form a modified support material. One or more catalytic component precursors (palladium or gold) may be contacted to the modified support material. The atomic ratio of gold to palladium is preferably in the range of about 0.3 to about 0.90. The support materials with the catalytic component may then be reduced using a reducing environment. A composition for catalyzing the production of an alkenyl alkanoates including a modified support material with palladium and gold is also included within the invention. Catalysts of the present invention may be used to produce alkenyl alkanoates in general and vinyl acetate in particular and are useful to produce low EA/VA ratios while maintaining or improving CO2 selectivity.
    Type: Application
    Filed: March 4, 2008
    Publication date: June 26, 2008
    Applicant: CELANESE INTERNATIONAL CORP.
    Inventors: Barbara Kimmich, Leslie E. Wade, Tao Wang, Andre Harmen Sijpkes, Roelandus Hendrikus Wilhelmus Moonen
  • Patent number: 7196218
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: March 27, 2007
    Assignees: Celanese International Corporation, Bioengineering Resources, Inc.
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Publication number: 20040236149
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Application
    Filed: May 5, 2004
    Publication date: November 25, 2004
    Applicants: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Patent number: 6753170
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: June 22, 2004
    Assignees: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Publication number: 20020086378
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 4, 2002
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V, Wikstrom
  • Patent number: 6368819
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 9, 2002
    Assignees: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom
  • Patent number: 4863971
    Abstract: A process for synthesis gas conversion utilizing perovskite catalysts is disclosed herein. The perovskites utilized in the process have a carbon selectivity of about eight mol percent or more for oxygenated compounds containing one to six carbon atoms. The process comprises reacting synthesis gas in the presence of a perovskite catalyst in the temperature range of about 200.degree. C. to about 400.degree. C.
    Type: Grant
    Filed: March 20, 1987
    Date of Patent: September 5, 1989
    Assignee: Hoechst Celanese Corporation
    Inventors: Jerry A. Broussard, Leslie E. Wade
  • Patent number: 4151209
    Abstract: In a process for hydroformylating an olefin in the presence of a catalyst comprising rhodium in complex combination with carbon monoxide and a triorganophosphorus ligand, progressive deactivation of the catalyst, as well as loss of the ligand species through by-product formation, are reduced by continuously stripping the liquid reaction medium to a degree such that the content of high-boiling organophosphorus by-products therein is maintained at a low level such that the ratio of phosphorus contained in said high-boiling by-products to phosphorus contained in the ligand present in the reaction medium does not exceed about 0.2.
    Type: Grant
    Filed: October 28, 1977
    Date of Patent: April 24, 1979
    Assignee: Celanese Corporation
    Inventors: James L. Paul, Wendell L. Pieper, Leslie E. Wade
  • Patent number: 4139565
    Abstract: In hydroformylating an ethylenically-unsaturated compound to produce a formyl-substituted derivative using as catalyst rhodium hydrido carbonyl in complex combination with a disphosphino ligand, a high ratio of the normal aldehyde to the iso-aldehyde in the product can be obtained even at very low ratios of ligand to rhodium in the catalyst mixture by using as the ligand a cyclic compound having in the ring two adjacent carbon atoms between the trans position of which the minimum and maximum attainable dihedral angels are, respectively, at least about 90.degree. and not more than about 180.degree., each of these adjacent carbon atoms being substituted with a phosphinomethyl group, the phosphinomethyl groups being in trans relationship to one another. If there are maintained in the reaction zone at least about 1.5 moles of the ligand per atom of rhodium, the desired results are obtained and higher ligand:rhodium ratios are not necessary.
    Type: Grant
    Filed: March 31, 1977
    Date of Patent: February 13, 1979
    Assignee: Celanese Corporation
    Inventors: Jerry D. Unruh, Leslie E. Wade
  • Patent number: RE39175
    Abstract: A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: July 11, 2006
    Assignees: Bioengineering Resources, Inc., Celanese International Corporation
    Inventors: James L. Gaddy, Edgar C. Clausen, Ching-Whan Ko, Leslie E. Wade, Carl V. Wikstrom