Patents by Inventor Li-Kai Cheng

Li-Kai Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146091
    Abstract: A vehicle power management system and a power management method thereof are provided. The power management method includes: determining, by a microcontroller, whether or not a voltage of an ignition-off signal is less than a voltage threshold when the microcontroller receives the ignition-off signal; stopping a vehicle power supply from charging a backup battery, and using the vehicle power supply to charge a back-end load; activating a counter of the microcontroller; stopping the vehicle power supply from charging the back-end load, and using the backup battery to charge the back-end load when a counting time of the counter reaches a first time threshold; sending, by the microcontroller, the ignition-off signal to the back-end load when the counting time of the counter reaches a second time threshold; and stopping the backup battery from charging the back-end load when the counting time of the counter reaches a third time threshold.
    Type: Application
    Filed: April 17, 2023
    Publication date: May 2, 2024
    Inventors: MING-ZONG WU, CHUN-KAI CHANG, LI-WEI CHENG
  • Patent number: 11092555
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: August 17, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Louis Chang, Shang-Chieh Chien, Shang-Ying Wu, Li-Kai Cheng, Tzung-Chi Fu, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng, Anthony Yen, Chia-Chen Chen
  • Publication number: 20200348241
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chun-Lin Louis CHANG, Shang-Chieh CHIEN, Shang-Ying WU, Li-Kai CHENG, Tzung-Chi FU, Bo-Tsun LIU, Li-Jui CHEN, Po-Chung CHENG, Anthony YEN, Chia-Chen CHEN
  • Patent number: 10718718
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: July 21, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin Louis Chang, Shang-Chieh Chien, Shang-Ying Wu, Li-Kai Cheng, Tzung-Chi Fu, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng, Anthony Yen, Chia-Chen Chen
  • Publication number: 20200025688
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Application
    Filed: September 29, 2019
    Publication date: January 23, 2020
    Inventors: Chun-Lin Louis CHANG, Shang-Chieh CHIEN, Shang-Ying WU, Li-Kai CHENG, Tzung-Chi FU, Bo-Tsun LIU, Li-Jui CHEN, Po-Chung CHENG, Anthony YEN, Chia-Chen CHEN
  • Patent number: 10429314
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: October 1, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Louis Chang, Shang-Chieh Chien, Shang-Ying Wu, Li-Kai Cheng, Tzung-Chi Fu, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng, Anthony Yen, Chia-Chen Chen
  • Patent number: 10361134
    Abstract: A method for performing a lithographic process over a semiconductor wafer is provided. The method includes coating a photoresist layer over a material layer which is formed on the semiconductor wafer in a track apparatus. The method further includes transferring the semiconductor wafer from the track apparatus to an exposure apparatus. The method also includes measuring a height of the photoresist layer before the removal of the semiconductor wafer from the track apparatus. In addition, the method includes measuring height of the material layer in the exposure apparatus. The method also includes determining a focal length for exposing the semiconductor wafer according to the height of the photoresist layer and the height of the material layer.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: July 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chih Lai, Li-Kai Cheng, Shun-Jung Chen, Bo-Tsun Liu, Han-Lung Chang, Tzung-Chi Fu, Li-Jui Chen
  • Publication number: 20190067132
    Abstract: A method for performing a lithographic process over a semiconductor wafer is provided. The method includes coating a photoresist layer over a material layer which is formed on the semiconductor wafer in a track apparatus. The method further includes transferring the semiconductor wafer from the track apparatus to an exposure apparatus. The method also includes measuring a height of the photoresist layer before the removal of the semiconductor wafer from the track apparatus. In addition, the method includes measuring height of the material layer in the exposure apparatus. The method also includes determining a focal length for exposing the semiconductor wafer according to the height of the photoresist layer and the height of the material layer.
    Type: Application
    Filed: November 1, 2017
    Publication date: February 28, 2019
    Inventors: Wei-Chih LAI, Li-Kai CHENG, Shun-Rong CHEN, Bo-Tsun LIU, Han-Lung CHANG, Tzung-Chi FU, Li-Jui CHEN
  • Publication number: 20190033225
    Abstract: A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
    Type: Application
    Filed: January 30, 2018
    Publication date: January 31, 2019
    Inventors: Chun-Lin Louis CHANG, Shang-Chieh CHIEN, Shang-Ying WU, Li-Kai CHENG, Tzung-Chi FU, Bo-Tsun LIU, Li-Jui CHEN, Po-Chung CHENG, Anthony YEN, Chia-Chen CHEN
  • Patent number: 9165394
    Abstract: The present invention sets forth a method for supporting enhanced audio on a graphics processing unit (GPU) in a computing device having a graphics subsystem. In one embodiment, the method includes the steps of determining whether an option of a GPU audio output is enabled and the graphics subsystem and a first external output device is connected, and routing a first audio stream to the GPU of the graphics subsystem for processing when the option of the GPU audio output is enabled and the graphics subsystem and the first external output device is in connection and causing the processed first audio stream to be transferred along a first transmission path to the first external output device, or otherwise causing a second audio stream to be transferred along a second transmission path to a second external output device.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 20, 2015
    Assignee: NVIDIA Corporation
    Inventors: Shany-I Chan, Ching-Yee Feng, Shih-Da Wu, Tseng-Ying Lee, Li-Kai Cheng, Li-Ling Chou, Yu-Kuo Chiang, Yu-Li (David) Ho
  • Patent number: 8643655
    Abstract: The present invention sets forth a method and system for communicating with an external device through a processing unit in a graphics system of a computing device. In one embodiment, the method comprises allocating a first set of memory buffers having a first memory buffer and a second memory buffer in the graphics system based on an identification information of the external device, and invoking a first thread processor of the processing unit of the graphics system to perform services associated with a physical layer according to the identification information of the external device by storing a first data stream received from the external device through an I/O interface of the processing unit of the graphics system in the first memory buffer and retrieving a second data stream from the second memory buffer for transmission to the external device through the I/O interface.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: February 4, 2014
    Assignee: Nvidia Corporation
    Inventors: Shany-I Chan, Ching-Yee Feng, Shih-Da Wu, Li-Kai Cheng, Li-Ling Chou, Yu-Kuo Chiang, Yu-Li (David) Ho
  • Patent number: 8316256
    Abstract: The present invention sets forth a method and a system for powering a graphics processing unit (GPU) with a power supply subsystem. In one embodiment, the method includes generating an offset in response to an operating voltage need of the GPU; and applying the offset to information associated with a first operating voltage of the GPU; wherein the offset causes the first operating voltage to change to a second operating voltage of the GPU.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 20, 2012
    Assignee: NVIDIA Corporation
    Inventors: Yu-Li (David) Ho, Li-Ling Chou, Yu-Kuo Chiang, Shany-I Chan, Pei-Hua Su, Li-Kai Cheng
  • Publication number: 20110145619
    Abstract: The present invention sets forth a method and a system for powering a graphics processing unit (GPU) with a power supply sybsystem. In one embodiment, the method includes generating an offset in response to an operating voltage need of the GPU; and applying the offset to information associated with a first operating voltage of the GPU; wherein the offset causes the first operating voltage to change to a second operating voltage of the GPU.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Inventors: Yu-Li (David) HO, Li-Ling Chou, Yu-Kuo Chiang, Shany-I Chan, Pei-Hua Su, Li-Kai Cheng
  • Publication number: 20110109636
    Abstract: The present invention sets forth a method and system for communicating with an external device through a processing unit in a graphics system of a computing device. In one embodiment, the method comprises allocating a first set of memory buffers having a first memory buffer and a second memory buffer in the graphics system based on an identification information of the external device, and invoking a first thread processor of the processing unit of the graphics system to perform services associated with a physical layer according to the identification information of the external device by storing a first data stream received from the external device through an I/O interface of the processing unit of the graphics system in the first memory buffer and retrieving a second data stream from the second memory buffer for transmission to the external device through the I/O interface.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Inventors: Shany-I CHAN, Ching-Yee Feng, Shih-Da Wu, Li-Kai Cheng, Li-Ling Chou, Yu-Kuo Chiang, Yu-Li (David) Ho
  • Publication number: 20110087345
    Abstract: The present invention sets forth a method for supporting enhanced audio on a graphics processing unit (GPU) in a computing device having a graphics subsystem. In one embodiment, the method includes the steps of determining whether an option of a GPU audio output is enabled and the graphics subsystem and a first external output device is connected, and routing a first audio stream to the GPU of the graphics subsystem for processing when the option of the GPU audio output is enabled and the graphics subsystem and the first external output device is in connection and causing the processed first audio stream to be transferred along a first transmission path to the first external output device, or otherwise causing a second audio stream to be transferred along a second transmission path to a second external output device.
    Type: Application
    Filed: October 13, 2009
    Publication date: April 14, 2011
    Inventors: Shany-I CHAN, Ching-Yee Feng, Shih-Da Wu, Tseng-Ying Lee, Li-Kai Cheng, Li-Ling Chou, Yu-Kuo Chiang, Yu-Li (David) Ho