Patents by Inventor Li-Kai Wu

Li-Kai Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978664
    Abstract: A method includes forming a first conductive feature over a semiconductor substrate, forming an ILD layer over the first conductive feature, patterning the ILD layer to form a trench, and forming a conductive layer over the patterned ILD layer to fill the trench. The method further includes polishing the conductive layer to form a via contact configured to interconnect the first conductive feature with a second conductive feature, where polishing the conductive layer exposes a top surface of the ILD layer, polishing the exposed top surface of the ILD layer, such that a top portion of the via contact protrudes from the exposed top surface of the ILD layer, and forming the second conductive feature over the via contact, such that the top portion of the via contact extends into the second conductive feature.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pang-Sheng Chang, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Li-Chieh Wu, Chun-Wei Hsu
  • Publication number: 20240145292
    Abstract: A single wafer spin cleaning apparatus with soaking, cleaning, and etching functions in accordance with the present invention includes a spin driver device, a wafer spin chuck, and a wafer support disk. The wafer spin chuck is driven by the spin driver device to spin. The wafer support disk is annular and surrounds the wafer spin chuck, can act relative to the wafer spin chuck to a wafer support position or a wafer disengagement position, and includes a soaking trough. The wafer support disk at the wafer support position can support a wafer such that the wafer is soaked in processing liquid injected in the soaking trough for implementing a high efficient cleaning or etching process.
    Type: Application
    Filed: February 2, 2023
    Publication date: May 2, 2024
    Inventors: Li-tso HUANG, Hsiu-kai CHANG, Chin-yuan WU, Ming-che HSU
  • Publication number: 20240146091
    Abstract: A vehicle power management system and a power management method thereof are provided. The power management method includes: determining, by a microcontroller, whether or not a voltage of an ignition-off signal is less than a voltage threshold when the microcontroller receives the ignition-off signal; stopping a vehicle power supply from charging a backup battery, and using the vehicle power supply to charge a back-end load; activating a counter of the microcontroller; stopping the vehicle power supply from charging the back-end load, and using the backup battery to charge the back-end load when a counting time of the counter reaches a first time threshold; sending, by the microcontroller, the ignition-off signal to the back-end load when the counting time of the counter reaches a second time threshold; and stopping the backup battery from charging the back-end load when the counting time of the counter reaches a third time threshold.
    Type: Application
    Filed: April 17, 2023
    Publication date: May 2, 2024
    Inventors: MING-ZONG WU, CHUN-KAI CHANG, LI-WEI CHENG
  • Patent number: 11969677
    Abstract: A method for eliminating bubbles from a liquid dispensing system includes flowing a liquid containing bubbles into a liquid inlet of a tank from a filter to substantially fill the tank, wherein substantially all bubbles accumulate in an upper portion of the tank having a lateral dimension greater than a lateral dimension of a lower portion of the tank, and flowing the liquid into the tank comprises flowing the liquid through an inlet pipe extending at an acute angle relative to a horizontally-oriented axis of the tank. The method further includes flowing a liquid substantially free of bubbles out of the tank via a liquid outlet at the lower portion of the tank for dispensing to a substrate.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Y. L. Huang, Chin-Kun Fang, Li-Jen Wu, Yu Kai Chen
  • Patent number: 11956994
    Abstract: The present disclosure is generally related to 3D imaging capable OLED displays. A light field display comprises an array of 3D light field pixels, each of which comprises an array of corrugated OLED pixels, a metasurface layer disposed adjacent to the array of 3D light field pixels, and a plurality of median layers disposed between the metasurface layer and the corrugated OLED pixels. Each of the corrugated OLED pixels comprises primary or non-primary color subpixels, and produces a different view of an image through the median layers to the metasurface to form a 3D image. The corrugated OLED pixels combined with a cavity effect reduce a divergence of emitted light to enable effective beam direction manipulation by the metasurface. The metasurface having a higher refractive index and a smaller filling factor enables the deflection and direction of the emitted light from the corrugated OLED pixels to be well controlled.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Chung-Chih Wu, Hoang Yan Lin, Guo-Dong Su, Zih-Rou Cyue, Li-Yu Yu, Wei-Kai Lee, Guan-Yu Chen, Chung-Chia Chen, Wan-Yu Lin, Gang Yu, Byung-Sung Kwak, Robert Jan Visser, Chi-Jui Chang
  • Patent number: 7581878
    Abstract: The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: September 1, 2009
    Assignee: Yeh-Chiang Technology Corp.
    Inventors: Ke-Chin Lee, Chen-Chuan Lin, Chi-Te Chin, Li-Kai Wu
  • Publication number: 20070047614
    Abstract: The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
    Type: Application
    Filed: December 22, 2005
    Publication date: March 1, 2007
    Inventors: Ke-Chin Lee, Chen-Chuan Lin, Chi-Te Chin, Li-Kai Wu