Patents by Inventor Liang-Gi Yao

Liang-Gi Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150011059
    Abstract: A layer of P-metal material having a work function of about 4.3 or 4.4 eV or less is formed over a high-k dielectric layer. Portions of the N-metal layer are converted to P-metal materials by introducing additives such as O, C, N, Si or others to produce a P-metal material having an increased work function of about 4.7 or 4.8 eV or greater. A TaC film may be converted to a material of TaCO, TaCN, or TaCON using this technique. The layer of material including original N-metal portions and converted P-metal portions is then patterned using a single patterning operation to simultaneously form semiconductor devices from both the unconverted N-metal sections and converted P-metal sections.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventors: Chen-Hua YU, Liang-Gi YAO, Cheng-Tung LIN
  • Publication number: 20140315360
    Abstract: A multi-layer scavenging metal gate stack, and methods of manufacturing the same, are disclosed. In an example, a gate stack disposed over a semiconductor substrate includes an interfacial dielectric layer disposed over the semiconductor substrate, a high-k dielectric layer disposed over the interfacial dielectric layer, a first conductive layer disposed over the high-k dielectric layer, and a second conductive layer disposed over the first conductive layer. The first conductive layer includes a first metal layer disposed over the high-k dielectric layer, a second metal layer disposed over the first metal layer, and a third metal layer disposed over the second metal layer. The first metal layer includes a material that scavenges oxygen impurities from the interfacial dielectric layer, and the second metal layer includes a material that adsorbs oxygen impurities from the third metal layer and prevents oxygen impurities from diffusing into the first metal layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Kuan-Ting Liu, Liang-Gi Yao, Yasutoshi Okuno, Clement Hsingjen Wann
  • Patent number: 8785272
    Abstract: A method of reducing impurities in a high-k dielectric layer comprising the following steps. A substrate is provided. A high-k dielectric layer having impurities is formed over the substrate. The high-k dielectric layer being formed by an MOCVD or an ALCVD process. The high-k dielectric layer is annealed to reduce the impurities within the high-k dielectric layer.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Ming-Fang Wang, Shih-Chang Chen, Mong-Song Liang
  • Patent number: 8766379
    Abstract: A multi-layer scavenging metal gate stack, and methods of manufacturing the same, are disclosed. In an example, a gate stack disposed over a semiconductor substrate includes an interfacial dielectric layer disposed over the semiconductor substrate, a high-k dielectric layer disposed over the interfacial dielectric layer, a first conductive layer disposed over the high-k dielectric layer, and a second conductive layer disposed over the first conductive layer. The first conductive layer includes a first metal layer disposed over the high-k dielectric layer, a second metal layer disposed over the first metal layer, and a third metal layer disposed over the second metal layer. The first metal layer includes a material that scavenges oxygen impurities from the interfacial dielectric layer, and the second metal layer includes a material that adsorbs oxygen impurities from the third metal layer and prevents oxygen impurities from diffusing into the first metal layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Ting Liu, Liang-Gi Yao, Yasutoshi Okuno, Clement Hsingjen Wann
  • Patent number: 8759185
    Abstract: A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Shang-Chih Chen, Yen-Ping Wang, Hsien-Kuang Chiu, Liang-Gi Yao, Chenming Hu
  • Publication number: 20140080316
    Abstract: A method of fabricating a semiconductor device includes contacting water with a silicon oxide layer. The method further includes diffusing an ozone-containing gas through water to treat the silicon oxide layer. The method further includes forming a dielectric layer over the treated silicon oxide layer.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Liang-Gi YAO, Chia-Cheng CHEN, Clement Hsingjen WANN
  • Patent number: 8603924
    Abstract: A method of forming gate dielectric material includes forming a silicon oxide gate layer over a substrate. The silicon oxide gate layer is treated with a first ozone-containing gas. After treating the silicon oxide gate layer, a high dielectric constant (high-k) gate dielectric layer is formed over the treated silicon oxide gate layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Chia-Cheng Chen, Clement Hsingjen Wann
  • Patent number: 8564018
    Abstract: A structure for an integrated circuit is disclosed. The structure includes a crystalline substrate and four crystalline layers. The first crystalline layer of first lattice constant is positioned on the crystalline substrate. The second crystalline layer has a second lattice constant different from the first lattice constant, and is positioned on said first crystalline layer. The third crystalline layer has a third lattice constant different than said second lattice constant, and is positioned on said second crystalline layer. The strained fourth crystalline layer includes, at least partially, a MOSFET device.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: October 22, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Chich Lin, Yee-Chia Yeo, Chien-Chao Huang, Chao-Hsiung Wang, Tien-Chih Chang, Chenming Hu, Fu-Liang Yang, Shih-Chang Chen, Mong-Song Liang, Liang-Gi Yao
  • Publication number: 20130256812
    Abstract: A method of performing an ultraviolet (UV) curing process on an interfacial layer over a semiconductor substrate, the method includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 700° C. Another method of performing an annealing process on an interfacial layer over a semiconductor substrate, the second method includes supplying a gas flow rate ranging from 10 sccm to 5 slm, wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 600° C.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 3, 2013
    Inventors: Liang-Gi YAO, Chun-Hu CHENG, Chen-Yi LEE, Jeff J. XU, Clement Hsingjen WANN
  • Patent number: 8470659
    Abstract: This description relates to a method including forming an interfacial layer over a semiconductor substrate. The method further includes etching back the interfacial layer. The method further includes performing an ultraviolet (UV) curing process on the interfacial layer. The UV curing process includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas, and heating the interfacial layer at a temperature less than or equal to 700° C. The method further includes depositing a high-k dielectric material over the interfacial layer.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 25, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Chun-Hu Cheng, Chen-Yi Lee, Jeff J. Xu, Clement Hsingjen Wann
  • Publication number: 20130075833
    Abstract: A multi-layer scavenging metal gate stack, and methods of manufacturing the same, are disclosed. In an example, a gate stack disposed over a semiconductor substrate includes an interfacial dielectric layer disposed over the semiconductor substrate, a high-k dielectric layer disposed over the interfacial dielectric layer, a first conductive layer disposed over the high-k dielectric layer, and a second conductive layer disposed over the first conductive layer. The first conductive layer includes a first metal layer disposed over the high-k dielectric layer, a second metal layer disposed over the first metal layer, and a third metal layer disposed over the second metal layer. The first metal layer includes a material that scavenges oxygen impurities from the interfacial dielectric layer, and the second metal layer includes a material that adsorbs oxygen impurities from the third metal layer and prevents oxygen impurities from diffusing into the first metal layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuan-Ting Liu, Liang-Gi Yao, Yasutoshi Okuno, Clement Hsingjen Wann
  • Publication number: 20130043545
    Abstract: The disclosure relates to integrated circuit fabrication and, more particularly, to a semiconductor device with a high-k gate dielectric layer. An exemplary structure for a semiconductor device comprises a substrate and a gate structure disposed over the substrate. The gate structure comprises a dielectric portion and an electrode portion that is disposed over the dielectric portion, and the dielectric portion comprises a carbon-doped high-k dielectric layer on the substrate and a carbon-free high-k dielectric layer adjacent to the electrode portion.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Yu LEE, Liang-Gi YAO, Yasutoshi OKUNO, Clement Hsingjen WANN
  • Publication number: 20120322253
    Abstract: This description relates to a method including forming an interfacial layer over a semiconductor substrate. The method further includes etching back the interfacial layer. The method further includes performing an ultraviolet (UV) curing process on the interfacial layer. The UV curing process includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas, and heating the interfacial layer at a temperature less than or equal to 700° C. The method further includes depositing a high-k dielectric material over the interfacial layer.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Liang-Gi YAO, Chun-Hu CHENG, Chen-Yi LEE, Jeff J. XU, Clement Hsingjen WANN
  • Patent number: 8294201
    Abstract: A device and method of formation are provided for a high-k gate dielectric and gate electrode. The high-k dielectric material is formed, and a silicon-rich film is formed over the high-k dielectric material. The silicon-rich film is then treated through either oxidation or nitridation to reduce the Fermi-level pinning that results from both the bonding of the high-k material to the subsequent gate conductor and also from a lack of oxygen along the interface of the high-k dielectric material and the gate conductor. A conductive material is then formed over the film through a controlled process to create the gate conductor.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Liang-Gi Yao
  • Patent number: 8268683
    Abstract: A method for reducing interfacial layer (IL) thickness for high-k dielectrics and metal gate stack is provided. In one embodiment, the method includes forming an interfacial layer on a semiconductor substrate, etching back the interfacial layer, depositing a high-k dielectric material over the interfacial layer, and forming a metal gate over the high-k dielectric material. The IL can be chemical oxide, ozonated oxide, thermal oxide, or formed by ultraviolet ozone (UVO) oxidation process from chemical oxide, etc. The etching back of IL can be performed by a Diluted HF (DHF) process, a vapor HF process, or any other suitable process. The method can further include performing UV curing or low thermal budget annealing on the interfacial layer before depositing the high-k dielectric material.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: September 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Chun-Hu Cheng, Chen-Yi Lee, Jeff J. Xu, Clement Hsingjen Wann
  • Publication number: 20120094504
    Abstract: A method of forming gate dielectric material includes forming a silicon oxide gate layer over a substrate. The silicon oxide gate layer is treated with a first ozone-containing gas. After treating the silicon oxide gate layer, a high dielectric constant (high-k) gate dielectric layer is formed over the treated silicon oxide gate layer.
    Type: Application
    Filed: January 11, 2011
    Publication date: April 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Liang-Gi YAO, Chia-Cheng CHEN, Clement Hsingjen WANN
  • Publication number: 20120083076
    Abstract: A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 5, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Shang-Chih Chen, Yen-Ping Wang, Hsien-Kuang Chiu, Liang-Gi Yao, Chenming Hu
  • Patent number: 8115263
    Abstract: Within a method for forming a silicon layer, there is employed at least one sub-layer formed of a higher crystalline silicon material and at least one sub-layer formed of a lower crystalline silicon material. The lower crystalline silicon material is formed employing a hydrogen treatment of the higher crystalline silicon material. The method is particularly useful for forming polysilicon based gate electrodes with enhanced dimensional control and enhanced performance.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Lin Chen, Liang-Gi Yao, Shih-Chang Chen
  • Patent number: 8106469
    Abstract: The present disclosure provides methods and apparatus of fluorine passivation in IC device fabrication. In one embodiment, a method of fabricating a semiconductor device includes providing a substrate and passivating a surface of the substrate with a mixture of hydrofluoric acid and alcohol to form a fluorine-passivated surface. The method further includes forming a gate dielectric layer over the fluorine-passivated surface, and then forming a metal gate electrode over the gate dielectric layer. A semiconductor device fabricated by such a method is also disclosed.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeff J. Xu, Liang-Gi Yao, Ta-Ming Kuan
  • Patent number: RE43673
    Abstract: A method of forming dual gate dielectric layers that is extendable to satisfying requirements for 50 nm and 70 nm technology nodes is described. A substrate is provided with STI regions that separate device areas. An interfacial layer and a high k dielectric layer are sequentially deposited on the substrate. The two layers are removed over one device area and an ultra thin silicon oxynitride layer with an EOT<10 nm is grown on the exposed device area. The high k dielectric layer is annealed during growth of the SiON dielectric layer. The high k dielectric layer is formed from a metal oxide or its silicate or aluminate and enables a low power device to be fabricated with an EOT<1.8 nm with a suppressed leakage current. The method is compatible with a dual or triple oxide thickness process when forming multiple gates.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: September 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tou-Hung Hou, Ming-Fang Wang, Chi-Chun Chen, Chih-Wei Yang, Liang-Gi Yao, Shih-Chang Chen