Patents by Inventor Liang Sheu

Liang Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937932
    Abstract: An acute kidney injury predicting system and a method thereof are proposed. A processor reads the data to be tested, the detection data, the machine learning algorithm and the risk probability comparison table from a main memory. The processor trains the detection data according to the machine learning algorithm to generate an acute kidney injury prediction model, and inputs the data to be tested into the acute kidney injury prediction model to generate an acute kidney injury characteristic risk probability and a data sequence table. The data sequence table lists the data to be tested in sequence according to a proportion of each of the data to be tested in the acute kidney injury characteristics. The processor selects one of the medical treatment data from the risk probability comparison table according to the acute kidney injury characteristic risk probability.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: March 26, 2024
    Assignees: TAICHUNG VETERANS GENERAL HOSPITAL, TUNGHAI UNIVERSITY
    Inventors: Chieh-Liang Wu, Chun-Te Huang, Cheng-Hsu Chen, Tsai-Jung Wang, Kai-Chih Pai, Chun-Ming Lai, Min-Shian Wang, Ruey-Kai Sheu, Lun-Chi Chen, Yan-Nan Lin, Chien-Lun Liao, Ta-Chun Hung, Chien-Chung Huang, Chia-Tien Hsu, Shang-Feng Tsai
  • Publication number: 20240074041
    Abstract: A circuit board includes a substrate and a metallic layer. A first area and at least one second area are defined on a portion of the substrate, the second area is located outside the first area. The metallic layer includes first test lines disposed on the first area and second test lines disposed on the second area. A first test pad of each of the first test lines has a first width, and a second test pad of each of the second test lines has a second width. The second width is greater than the first width such that probes of an electrical testing tool can contact the first and second test pads on the circuit board correctly during electrical testing.
    Type: Application
    Filed: August 16, 2023
    Publication date: February 29, 2024
    Inventors: Gwo-Shyan Sheu, Kuo-Liang Huang, Hsin-Hao Huang, Pei-Wen Wang, Yu-Chen Ma
  • Patent number: 8210423
    Abstract: The present disclosure relates to a method for fabricating the above-described a magnesium-based composite material. The method includes providing at least two magnesium-based plates, providing at least one nanoscale reinforcement film, sandwiching the at least one nanoscale reinforcement film between the at least two magnesium-based plates to form a preform, and hot rolling the preform to achieve the magnesium-based composite material.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 3, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li, Kai-Li Jiang
  • Patent number: 7987894
    Abstract: An apparatus for fabrication of a magnesium-based carbon nanotube composite material, the apparatus includes a thixomolding machine, and a feeding device. The thixomolding machine includes a heating barrel, a feeding inlet, a nozzle, a heating portion, and a plunger. The heating barrel includes a first end and a second end. The feeding inlet is disposed at the first end. The nozzle is disposed at the second end. The heating portion is disposed around the heating barrel. The plunger is disposed at a center of the heating barrel. The feeding device includes a hopper; an aspirator connected to the hopper, a first container, and a second container. The hopper is in communication with the first container and the second container. A method for fabricating a magnesium-based carbon nanotube composite material is also provided.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: August 2, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li
  • Patent number: 7921899
    Abstract: A method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing a magnesium-based melt and a plurality of carbon nanotubes, mixing the carbon nanotubes with the magnesium-based melt to achieve a mixture; (b) injecting the mixture into at least one mold to achieve a preform; and (c) extruding the preform to achieve the magnesium-based carbon nanotube composite material.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 12, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li
  • Patent number: 7829200
    Abstract: The present invention relates to a magnesium-based composite material includes at least two magnesium-based metallic layers; and at least one magnesium-based composite layer respectively sandwiched by the at least two magnesium-based metallic layers. The present invention also relates to a method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing at least two magnesium-based plates; (b) providing a plurality of nanoscale reinforcements; (c) sandwiching the nanoscale reinforcements between the at least two magnesium-based plates to form a preform; and (d) hot pressing the preform to achieve the magnesium-based composite material.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: November 9, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Jie Wang, Wen-Zhen Li, Kai-Li Jiang
  • Patent number: 7799437
    Abstract: The present invention relates to a magnesium-based composite material includes a magnesium-based metallic material, and at least one nanoscale reinforcement film disposed therein. The present invention also relates to a method for fabricating the above-described a magnesium-based composite material, the method includes the steps of: (a) providing at least two magnesium-based plates; (b) providing at least one nanoscale reinforcement film; (c) sandwiching the at least one nanoscale reinforcement film between the at least two magnesium-based plates to form a preform; and (d) hot rolling the preform to achieve the magnesium-based composite material.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: September 21, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li, Kai-Li Jiang
  • Publication number: 20100200125
    Abstract: The present disclosure relates to a method for fabricating the above-described a magnesium-based composite material. The method includes providing at least two magnesium-based plates, providing at least one nanoscale reinforcement film, sandwiching the at least one nanoscale reinforcement film between the at least two magnesium-based plates to form a preform, and hot rolling the preform to achieve the magnesium-based composite material.
    Type: Application
    Filed: April 26, 2010
    Publication date: August 12, 2010
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: KAM-SHAU CHAN, CHENG-SHI CHEN, GUANG-LIANG SHEU, QING-CHUN DU, WEN-ZHEN LI, KAI-LI JIANG
  • Publication number: 20090146098
    Abstract: The present invention relates to a powder extinguishing agent used for extinguishing fires of burning light metals. The powder extinguishing agent includes: potassium chloride in an amount from 40% to 50% by weight, sodium chloride in an amount from 45% to 55% by weight, and calcium fluoride in an amount from 2% to 8% by weight. The present invention also relates to a method for manufacturing the powder extinguishing agent.
    Type: Application
    Filed: August 6, 2008
    Publication date: June 11, 2009
    Applicants: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Guang-Liang Sheu, Li-Qing Zhang
  • Publication number: 20090127743
    Abstract: A method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing a magnesium-based melt and a plurality of carbon nanotubes, mixing the carbon nanotubes with the magnesium-based melt to achieve a mixture; (b) injecting the mixture into at least one mold to achieve a preform; and (c) extruding the preform to achieve the magnesium-based carbon nanotube composite material.
    Type: Application
    Filed: March 31, 2008
    Publication date: May 21, 2009
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: KAM-SHAU CHAN, CHENG-SHI CHEN, GUANG-LIANG SHEU, QING-CHUN DU, WEN-ZHEN LI
  • Publication number: 20090081408
    Abstract: The present invention relates to a magnesium-based composite material includes a magnesium-based metallic material, and at least one nanoscale reinforcement film disposed therein. The present invention also relates to a method for fabricating the above-described a magnesium-based composite material, the method includes the steps of: (a) providing at least two magnesium-based plates; (b) providing at least one nanoscale reinforcement film; (c) sandwiching the at least one nanoscale reinforcement film between the at least two magnesium-based plates to form a preform; and (d) hot rolling the preform to achieve the magnesium-based composite material.
    Type: Application
    Filed: April 24, 2008
    Publication date: March 26, 2009
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li, Kai-Li Jiang
  • Publication number: 20090057957
    Abstract: An apparatus for fabrication of a magnesium-based carbon nanotube composite material, the apparatus includes a thixomolding machine, and a feeding device. The thixomolding machine includes a heating barrel, a feeding inlet, a nozzle, a heating portion, and a plunger. The heating barrel includes a first end and a second end. The feeding inlet is disposed at the first end. The nozzle is disposed at the second end. The heating portion is disposed around the heating barrel. The plunger is disposed at a center of the heating barrel. The feeding device includes a hopper; an aspirator connected to the hopper, a first container, and a second container. The hopper is in communication with the first container and the second container. A method for fabricating a magnesium-based carbon nanotube composite material is also provided.
    Type: Application
    Filed: August 21, 2008
    Publication date: March 5, 2009
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Guang-Liang Sheu, Qing-Chun Du, Wen-Zhen Li
  • Publication number: 20090061211
    Abstract: The present invention relates to a magnesium-based composite material includes at least two magnesium-based metallic layers; and at least one magnesium-based composite layer respectively sandwiched by the at least two magnesium-based metallic layers. The present invention also relates to a method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing at least two magnesium-based plates; (b) providing a plurality of nanoscale reinforcements; (c) sandwiching the nanoscale reinforcements between the at least two magnesium-based plates to form a preform; and (d) hot pressing the preform to achieve the magnesium-based composite material.
    Type: Application
    Filed: April 24, 2008
    Publication date: March 5, 2009
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: KAM-SHAU CHAN, CHENG-SHI CHEN, GUANG-LIANG SHEU, JIE WANG, WEN-ZHEN LI, KAI-LI JIANG
  • Patent number: 5227564
    Abstract: A process for the preparation of tertiary olefins by decomposition of a tertiary alkyl ether in the vapor phase in the presence of a catalyst, wherein the catalyst used is a composition of: (i) 5 to 95 percent by weight of a crystalline aluminosilicate zeolite having a silica-to-alumina mole ratio of at least about 5 and a Constraint Index of about 1 to about 12, and (ii) 95 to 5 percent by weight of a binder selected from amorphous silica, alumina, silica-alumina and mixtures thereof.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: July 13, 1993
    Assignee: Dairen Chemical Corporation
    Inventors: S. C. Chen, C. C. Chu, F. S. Lin, Liang Sheu, Shing Y. Wang