Patents by Inventor Liang-Yu SU

Liang-Yu SU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240168254
    Abstract: An imaging lens assembly includes a lens barrel, optical lens elements, an annular retaining element and a nano-microstructure. The optical lens elements include at least one optical lens element disposed in the lens barrel. The annular retaining element is physically contacted with the optical lens element, and the annular retaining element includes an object-side surface, an image-side surface, an outer diameter surface and a light-through hole. The outer diameter surface is connected to the object-side surface and the image-side surface. The light-through hole is formed by gradually tapering from the object-side surface and the image-side surface towards the optical axis. The nano-microstructure has a plurality of irregular ridged convexes. The nano-microstructure is located between a lens barrel area defined via the lens barrel and a lens element area defined via the optical lens element on a direction vertical to the optical axis.
    Type: Application
    Filed: November 15, 2023
    Publication date: May 23, 2024
    Inventors: Ssu-Hsin LIU, Heng-Yi SU, Liang-Chieh WENG, Wen-Yu TSAI, Ming-Ta CHOU
  • Patent number: 11978810
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a varactor comprising a reduced surface field (RESURF) region. The method includes forming a drift region having a first doping type within a substrate. A RESURF region having a second doping type is formed within the substrate such that the RESURF region is below the drift region. A gate structure is formed on the substrate. A pair of contact regions is formed within the substrate on opposing sides of the gate structure. The contact regions respectively abut the drift region and have the first doping type, and wherein the first doping type is opposite the second doping type.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Yu Su, Chih-Wen Yao, Hsiao-Chin Tuan, Ming-Ta Lei
  • Patent number: 11973076
    Abstract: The present disclosure provides a electrostatic discharge (ESD) protection circuit, coupled between a first reference terminal and a second reference terminal; the ESD protection circuit includes a first voltage divider, a second voltage divider, a first trigger circuit and a second trigger circuit. The first trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the first reference terminal, and the second terminal is coupled to the second reference terminal via the first voltage divider. The second trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the second reference terminal, the second terminal is coupled to the first reference terminal via the second voltage divider, and the second trigger circuit and the first trigger circuit are in parallel connection.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Fang Lai, Liang-Yu Su, Hang Fan
  • Publication number: 20240069299
    Abstract: An optical element driving mechanism includes a movable assembly, a fixed assembly, and a driving assembly. The movable assembly is configured to be connected to an optical element. The movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly in a range of motion. The optical element driving mechanism further includes a positioning assembly configured to position the movable assembly at a predetermined position relative to the fixed assembly when the driving assembly is not operating.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Chao-Chang HU, Kuen-Wang TSAI, Liang-Ting HO, Chao-Hsi WANG, Chih-Wei WENG, He-Ling CHANG, Che-Wei CHANG, Sheng-Zong CHEN, Ko-Lun CHAO, Min-Hsiu TSAI, Shu-Shan CHEN, Jungsuck RYOO, Mao-Kuo HSU, Guan-Yu SU
  • Publication number: 20230378323
    Abstract: A semiconductor device includes a doped region of a first conductivity type in a substrate, a source/drain region of the first conductivity in the doped region, and a gate structure overlapping a portion of the doped region. The semiconductor device further comprises a multi-layer spacer over a first sidewall of the gate structure. The multi-layer spacer comprises a first spacer layer, a second spacer layer over the first spacer layer, and a third spacer layer over the second spacer layer. The first spacer layer and the second spacer layer are in contact with the first sidewall of the gate structure.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC CHINA COMPANY LIMITED
    Inventors: Feng HAN, Lei SHI, Hung-Chih TSAI, Liang-Yu SU, Hang FAN
  • Publication number: 20230361208
    Abstract: In some embodiments, the present disclosure relates to a method of forming a high electron mobility transistor (HEMT) device. The method includes forming a passivation layer over a substrate. A source contact and a drain contact are formed within the passivation layer. A part of the passivation layer is removed to form a cavity. The cavity has a lower portion formed by a first sidewall and a second sidewall of the passivation layer and an upper portion formed by the first sidewall of the passivation layer and a sidewall of the source contact. A gate structure is formed within the passivation layer between the drain contact and the cavity. A cap structure is formed within the cavity.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 9, 2023
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Patent number: 11764288
    Abstract: A method includes forming a body region of a first conductivity type and a doped region of a second conductivity type in a semiconductor substrate; forming a gate structure the substrate, and first gate spacers respectively on first and second sides of the gate structure; depositing a second spacer layer and a third spacer layer over the gate structure; patterning the third spacer layer into third gate spacers respectively on the first and second sides of the gate structure; removing a first one of the third gate spacers from the first side of the gate structure, while leaving a second one of the third gate spacers on the second side of the gate structure; and patterning the second spacer layer into a second gate spacer by using the second one of the third gate spacers as an etching mask.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: September 19, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC CHINA COMPANY LIMITED
    Inventors: Feng Han, Lei Shi, Hung-Chih Tsai, Liang-Yu Su, Hang Fan
  • Patent number: 11742419
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device. The semiconductor device includes a channel layer disposed over a base substrate, and an active layer disposed on the channel layer. A source contact and a drain contact are over the active layer and are laterally spaced apart from one another along a first direction. A gate electrode is arranged on the active layer between the source contact and the drain contact. A passivation layer is arranged on the active layer and laterally surrounds the source contact, the drain contact, and the gate electrode. A conductive structure is electrically coupled to the source contact and is disposed laterally between the gate electrode and the source contact. The conductive structure extends along an upper surface and a sidewall of the passivation layer.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Publication number: 20220367614
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Liang-Yu SU, Hung-Chih TSAI, Ruey-Hsin LIU, Ming-Ta LEI, Chang-Tai YANG, Te-Yin HSIA, Yu-Chang JONG, Nan-Ying YANG
  • Publication number: 20220336638
    Abstract: A method includes forming a body region of a first conductivity type and a doped region of a second conductivity type in a semiconductor substrate; forming a gate structure the substrate, and first gate spacers respectively on first and second sides of the gate structure; depositing a second spacer layer and a third spacer layer over the gate structure; patterning the third spacer layer into third gate spacers respectively on the first and second sides of the gate structure; removing a first one of the third gate spacers from the first side of the gate structure, while leaving a second one of the third gate spacers on the second side of the gate structure; and patterning the second spacer layer into a second gate spacer by using the second one of the third gate spacers as an etching mask.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC CHINA COMPANY LIMITED
    Inventors: Feng HAN, Lei SHI, Hung-Chih TSAI, Liang-Yu SU, Hang FAN
  • Patent number: 11437466
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Liang-Yu Su, Hung-Chih Tsai, Ruey-Hsin Liu, Ming-Ta Lei, Chang-Tai Yang, Te-Yin Hsia, Yu-Chang Jong, Nan-Ying Yang
  • Patent number: 11380779
    Abstract: A semiconductor device includes a gate structure, a double diffused region, a source region, a drain region, a first gate spacer, and a second gate spacer. The gate structure is over a semiconductor substrate. The double diffused region is in the semiconductor substrate and laterally extends past a first side of gate structure. The source region is in the semiconductor substrate and is adjacent a second side of the gate structure opposite the first side. The drain region is in the double diffused region in the semiconductor substrate and is of a same conductivity type as the double diffused region. The first gate spacer is on the first side of the gate structure. The second gate spacer extends upwardly from the double diffused region along an outermost sidewall of the first gate spacer and terminates prior to reaching a top surface of the gate structure.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: July 5, 2022
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC CHINA COMPANY LIMITED
    Inventors: Feng Han, Lei Shi, Hung-Chih Tsai, Liang-Yu Su, Hang Fan
  • Publication number: 20220093781
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device. The semiconductor device includes a channel layer disposed over a base substrate, and an active layer disposed on the channel layer. A source contact and a drain contact are over the active layer and are laterally spaced apart from one another along a first direction. A gate electrode is arranged on the active layer between the source contact and the drain contact. A passivation layer is arranged on the active layer and laterally surrounds the source contact, the drain contact, and the gate electrode. A conductive structure is electrically coupled to the source contact and is disposed laterally between the gate electrode and the source contact. The conductive structure extends along an upper surface and a sidewall of the passivation layer.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Publication number: 20220069107
    Abstract: A semiconductor device includes a gate structure, a double diffused region, a source region, a drain region, a first gate spacer, and a second gate spacer. The gate structure is over a semiconductor substrate. The double diffused region is in the semiconductor substrate and laterally extends past a first side of gate structure. The source region is in the semiconductor substrate and is adjacent a second side of the gate structure opposite the first side. The drain region is in the double diffused region in the semiconductor substrate and is of a same conductivity type as the double diffused region. The first gate spacer is on the first side of the gate structure. The second gate spacer extends upwardly from the double diffused region along an outermost sidewall of the first gate spacer and terminates prior to reaching a top surface of the gate structure.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 3, 2022
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC CHINA COMPANY LIMITED
    Inventors: Feng HAN, Lei SHI, Hung-Chih TSAI, Liang-Yu SU, Hang FAN
  • Publication number: 20220052153
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Liang-Yu SU, Hung-Chih TSAI, Ruey-Hsin LIU, Ming-Ta LEI, Chang-Tai YANG, Te-Yin HSIA, Yu-Chang JONG, Nan-Ying YANG
  • Patent number: 11195945
    Abstract: In some embodiments, the present disclosure relates to a high voltage device that includes a substrate comprising a first semiconductor material. A channel layer that comprises a second semiconductor material is arranged over the substrate. An active layer that comprises a third semiconductor material is arranged over the channel layer. Over the active layer is a source contact spaced apart from a drain contact. A gate structure is arranged laterally between the source and drain contacts and over the active layer to define a high electron mobility transistor (HEMT) device. Between the gate structure and the source contact is a cap structure, which is coupled to the source contact and laterally spaced from the gate structure. The cap structure and a gate electrode of the gate structure comprise a same material.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: December 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Publication number: 20210273119
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a varactor comprising a reduced surface field (RESURF) region. The method includes forming a drift region having a first doping type within a substrate. A RESURF region having a second doping type is formed within the substrate such that the RESURF region is below the drift region. A gate structure is formed on the substrate. A pair of contact regions is formed within the substrate on opposing sides of the gate structure. The contact regions respectively abut the drift region and have the first doping type, and wherein the first doping type is opposite the second doping type.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Inventors: Liang-Yu Su, Chih-Wen Yao, Hsiao-Chin Tuan, Ming-Ta Lei
  • Publication number: 20210249404
    Abstract: The present disclosure provides a electrostatic discharge (ESD) protection circuit, coupled between a first reference terminal and a second reference terminal; the ESD protection circuit includes a first voltage divider, a second voltage divider, a first trigger circuit and a second trigger circuit. The first trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the first reference terminal, and the second terminal is coupled to the second reference terminal via the first voltage divider. The second trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the second reference terminal, the second terminal is coupled to the first reference terminal via the second voltage divider, and the second trigger circuit and the first trigger circuit are in parallel connection.
    Type: Application
    Filed: March 31, 2021
    Publication date: August 12, 2021
    Inventors: MING-FANG LAI, LIANG-YU SU, HANG FAN
  • Patent number: 11018266
    Abstract: Various embodiments of the present disclosure are directed towards a varactor comprising a reduced surface field (RESURF) region. In some embodiments, the varactor includes a drift region, a gate structure, a pair of contact regions, and a RESURF region. The drift region is within a substrate and has a first doping type. The gate structure overlies the drift region. The contact regions are within the substrate and overlie the drift region. Further, the contact regions have the first doping type. The gate structure is laterally sandwiched between the contact regions. The RESURF region is in the substrate, below the drift region, and has a second doping type. The second doping type is opposite the first doping type. The RESURF region aids in depleting the drift region under the gate structure, which decreases the minimum capacitance of the varactor and increases the tuning range of the varactor.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 25, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Liang-Yu Su, Chih-Wen Yao, Hsiao-Chin Tuan, Ming-Ta Lei
  • Patent number: 10978445
    Abstract: The present disclosure provides a electrostatic discharge (ESD) protection circuit, coupled between a first reference terminal and a second reference terminal; the ESD protection circuit includes a first voltage divider, a second voltage divider, a first trigger circuit and a second trigger circuit. The first trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the first reference terminal, and the second terminal is coupled to the second reference terminal via the first voltage divider. The second trigger circuit includes a first terminal and a second terminal, wherein the first terminal is coupled to the second reference terminal, the second terminal is coupled to the first reference terminal via the second voltage divider, and the second trigger circuit and the first trigger circuit are in parallel connection.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Fang Lai, Liang-Yu Su, Hang Fan