Patents by Inventor Lihsyng Standford Lee

Lihsyng Standford Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7632504
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: December 15, 2009
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Patent number: 7150872
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 19, 2006
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Patent number: 6872393
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 29, 2005
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Publication number: 20020098192
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: July 25, 2002
    Applicant: ENZON, INC.
    Inventors: Marc Whitlow, Robert G.L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Publication number: 20020061307
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: May 23, 2002
    Applicant: ENZON, INC.
    Inventors: Marc Whitlow, Robert G.L. Shorr, David R. Filpula, Lihsyng Standford Lee