Patents by Inventor Lily Springer

Lily Springer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865584
    Abstract: A contact array optimization scheme for ESD devices. In one embodiment, contact apertures patterned through a pre-metal dielectric layer over active areas may be selectively modified in size, shape, placement and the like, to increase ESD protection performance, e.g., such as maximizing the transient current density, etc., in a standard ESD rating test.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: He Lin, Kun Chen, Chao Wu, Dening Wang, Lily Springer, Andy Strachan, Gang Xue
  • Publication number: 20180006013
    Abstract: A contact array optimization scheme for ESD devices. In one embodiment, contact apertures patterned through a pre-metal dielectric layer over active areas may be selectively modified in size, shape, placement and the like, to increase ESD protection performance, e.g., such as maximizing the transient current density, etc., in a standard ESD rating test.
    Type: Application
    Filed: November 4, 2016
    Publication date: January 4, 2018
    Inventors: He LIN, Kun CHEN, Chao WU, Dening WANG, Lily SPRINGER, Andy STRACHAN, Gang XUE
  • Patent number: 8664080
    Abstract: A method for forming a vertical electrostatic discharge (ESD) protection device includes depositing a multi-layer n-type epitaxial layer on a substrate having p-type surface including first epitaxial depositing to form a first n-type epitaxial layer on the p-type surface, and second epitaxial depositing to form a second n-type epitaxial layer formed on the first n-type epitaxial layer. The first type epitaxial layer has a peak doping level which is at least double that of the second n-type epitaxial layer. A p+ layer is formed on the second n-type epitaxial layer. An etch step etches through the p+ layer and multi-layer n-type epitaxial layer to reach the substrate to form a trench. The trench is filled with a filler material to form a trench isolation region. A metal contact is formed on the p+ layer for providing contact to the p+ layer.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Toshiyuki Tani, Hiroshi Yamasaki, Kentaro Takahashi, Lily Springer
  • Publication number: 20120299146
    Abstract: A method for forming a vertical electrostatic discharge (ESD) protection device includes depositing a multi-layer n-type epitaxial layer on a substrate having p-type surface including first epitaxial depositing to form a first n-type epitaxial layer on the p-type surface, and second epitaxial depositing to form a second n-type epitaxial layer formed on the first n-type epitaxial layer. The first type epitaxial layer has a peak doping level which is at least double that of the second n-type epitaxial layer. A p+ layer is formed on the second n-type epitaxial layer. An etch step etches through the p+ layer and multi-layer n-type epitaxial layer to reach the substrate to form a trench. The trench is filled with a filler material to form a trench isolation region. A metal contact is formed on the p+ layer for providing contact to the p+ layer.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: TOSHIYUKI TANI, HIROSHI YAMASAKI, KENTARO TAKAHASHI, LILY SPRINGER
  • Publication number: 20070205435
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Patent number: 7226835
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: June 5, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Publication number: 20070033556
    Abstract: Validation of at least some of a proposed semiconductor design layout is disclosed. According to one or more aspects of the present invention, a first voltage dependent design rule is applied to an edge of an area of the layout if the edge is not covered by a pseudo layer. A second voltage dependent design rule is, on the other hand, applied to the edge of the area if the edge is covered by the pseudo layer.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: Lily Springer, Haim Horovitz, Robert Shaw, Sameer Pendharkar, Wen-Hwa Chu, Paul Mannas
  • Patent number: 7164174
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 16, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Lily Springer
  • Publication number: 20060189089
    Abstract: The present invention provides an integrated high voltage capacitor, a method of manufacture therefore, and an integrated circuit chip including the same. The integrated high voltage capacitor, among other features, includes a first capacitor plate (120) located over or in a semiconductor substrate (105), and an insulator (130) located over the first capacitor plate (120), at least a portion of the insulator (130) comprising an interlevel dielectric layer (135, 138, 143, or 148). The integrated high voltage capacitor further includes capacitance uniformity structures (910) located at least partially within the insulator (130) and a second capacitor plate (160) located over the insulator (130).
    Type: Application
    Filed: October 13, 2005
    Publication date: August 24, 2006
    Applicant: Texas Instruments Inc.
    Inventors: David Larkin, Lily Springer, Makoto Takemura, Ashish Gokhale, Dhaval Saraiya
  • Publication number: 20060186450
    Abstract: The present invention provides an integrated high voltage capacitor, a method of manufacture therefore, and an integrated circuit chip including the same. The integrated high voltage capacitor, among other features, includes a first capacitor plate (120) located over or in a semiconductor substrate (105), and an insulator (130) located over the first capacitor plate (120), at least a portion of the insulator (130) comprising an interlevel dielectric layer (135, 138, 143, or 148). The integrated high voltage capacitor further includes a second capacitor plate (160) located over the insulator (130).
    Type: Application
    Filed: October 13, 2005
    Publication date: August 24, 2006
    Applicant: Texas Instruments Inc.
    Inventors: David Larkin, Lily Springer, Makoto Takemura, Ashish Gokhale, Dhaval Saraiya
  • Publication number: 20050258453
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Application
    Filed: July 28, 2005
    Publication date: November 24, 2005
    Inventor: Lily Springer
  • Patent number: 6958269
    Abstract: A method for manufacturing a memory device includes forming an oxide layer adjacent a substrate. A floating gate layer is formed and disposed outwardly from the oxide layer. A dielectric layer is formed, such that it is disposed outwardly from the floating gate layer. Then, a conductive material layer is formed and disposed outwardly from the dielectric layer, wherein the conductive material layer forms a control gate that is substantially isolated from the floating gate layer by the dielectric layer.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: October 25, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Josef Czeslaw Mitros, Imran Khan, Lily Springer
  • Patent number: 6949424
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 27, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Lily Springer
  • Patent number: 6869851
    Abstract: A method of forming two regions having differing depths using a single implantation process is provided. A mask having two openings associated therewith is formed over a semiconductor body, wherein one of the openings has a size larger than an implantation design rule, and the other opening has a size smaller than the design rule. An implant is performed into the semiconductor body through the implant mask, resulting in two distinct doped regions, wherein the region associated with the larger opening has more dopant than the region associated with the smaller opening. Subsequent activation and thermal processing results in the one region diffusing a greater amount than the second region, thereby resulting in two regions formed concurrently having different depths.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: March 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Joe R. Trogolo, Lily Springer, Jeff Smith, Sheldon Haynie
  • Publication number: 20050045948
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 3, 2005
    Inventor: Lily Springer
  • Publication number: 20040152288
    Abstract: A method of forming two regions having differing depths using a single implantation process is provided. A mask having two openings associated therewith is formed over a semiconductor body, wherein one of the openings has a size larger than an implantation design rule, and the other opening has a size smaller than the design rule. An implant is performed into the semiconductor body through the implant mask, resulting in two distinct doped regions, wherein the region associated with the larger opening has more dopant than the region associated with the smaller opening. Subsequent activation and thermal processing results in the one region diffusing a greater amount than the second region, thereby resulting in two regions formed concurrently having different depths.
    Type: Application
    Filed: January 20, 2004
    Publication date: August 5, 2004
    Inventors: Joe R. Trogolo, Lily Springer, Jeff Smith, Sheldon Hayrie
  • Patent number: 6747308
    Abstract: An EEPROM (100) comprises a source region (122), a drain region (120); and a polysilicon layer (110). The polysilicon layer (110) comprises a floating gate comprising at least one polysilicon finger (112A-112E) operatively coupling the source region (122) and drain region (120) and a control gate comprising at least one of the polysilicon fingers (112A-112E) capacitively coupled to the floating gate. The EEPROM (100) has a substantially reduce area compared to prior art EEPROM since an n-well region is eliminated.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 8, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Jozef C. Mitros, Lily Springer, Roland Bucksch
  • Patent number: 6716709
    Abstract: A method of forming two regions having differing depths using a single implantation process is provided. A mask having two openings associated therewith is formed over a semiconductor body, wherein one of the openings has a size larger than an implantation design rule, and the other opening has a size smaller than the design rule. An implant is performed into the semiconductor body through the implant mask, resulting in two distinct doped regions, wherein the region associated with the larger opening has more dopant than the region associated with the smaller opening. Subsequent activation and thermal processing results in the one region diffusing a greater amount than the second region, thereby resulting in two regions formed concurrently having different depths.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: April 6, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Lily Springer, Jeff Smith, Sheldon Haynie, Joe R. Trogolo
  • Publication number: 20040007716
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Publication number: 20030235949
    Abstract: A method for manufacturing a memory device includes forming an oxide layer adjacent a substrate. A floating gate layer is formed and disposed outwardly from the oxide layer. A dielectric layer is formed, such that it is disposed outwardly from the floating gate layer. Then, a conductive material layer is formed and disposed outwardly from the dielectric layer, wherein the conductive material layer forms a control gate that is substantially isolated from the floating gate layer by the dielectric layer.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 25, 2003
    Applicant: Texas Instruments Incorporated
    Inventors: Josef Czeslaw Mitros, Imran Khan, Lily Springer