Patents by Inventor Lin Ji

Lin Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050106725
    Abstract: The present invention relates to methods and compositions for culturing embryonic stem (ES) cells. The methods relate to growing the cells in culture on a flexible solid porous matrix, suitably without conditioned media or fibroblast feeder cells and applying an effective amount of periodic strain to stretch the flexible matrix, such that the cells proliferate and exhibit reduced differentiation. These methods in part facilitate a reduction in cross-species contamination for ES cells used in medical applications.
    Type: Application
    Filed: November 19, 2003
    Publication date: May 19, 2005
    Inventors: Sean Palecek, Juan de Pablo, Lin Ji
  • Publication number: 20050106554
    Abstract: The present invention relates to methods and compositions for the cryopreservation of pluripotent cells in general and human embryonic stem (ES) cells in particular. The stem cells are grown on a bottom layer of solid support matrix and subsequently covered by a top layer of solid support matrix forming a matrix-cell-matrix composition, to which an effective amount of cryopreservation media is added, prior to freezing. The methods of the invention yield cryopreserved cells that exhibit an increase in cell viability and a decrease in cell differentiation, facilitating storage, shipping and handling of embryonic stem cell stocks and lines for research and therapeutics.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 19, 2005
    Inventors: Sean Palecek, Juan de Pablo, Lin Ji, James Thomson
  • Publication number: 20040028654
    Abstract: Embodiments of the invention include methods and compositions including viral composition that have high transduction efficiencies in vivo, in vitro and ex vivo. The viral composition include a viral vector and a protamine molecule, wherein the viral vector includes a polynucleotide encoding a tumor suppressor gene. The methods of the invention include administering the viral composition to a patient or subject for treatment of disease, in particular cancer, that is characterized by a reduced vector-induced production of neutralizing antibodies and a decreased vector-induced toxicity as compared to delivery of viral vectors alone.
    Type: Application
    Filed: March 24, 2003
    Publication date: February 12, 2004
    Applicant: Board of Regents, The University of Texas System
    Inventors: Lin Ji, Jack Roth
  • Publication number: 20040016006
    Abstract: Tumor suppressor genes play a major role in the pathogenesis of human lung cancer and other cancers. Cytogenetic and allelotyping studies of fresh tumor and tumor-derived cell lines showed that cytogenetic changes and allele loss on the short arm of chromosome 3 (3p) are most frequently involved in about 90% of small cell lung cancers and greater than 50% of non-small cell lung cancers. A group of recessive oncogenes, Fus1, 101F6, Gene 21 (NPRL2), Gene 26 (CACNA2D2), Luca 1 (HYAL1), Luca 2 (HYAL2), PL6, 123F2 (RaSSFI), SEM A3 and Beta* (BLU), as defined by homozygous deletions in lung cancers, have been located and isolated at 3p21.3.
    Type: Application
    Filed: May 27, 2003
    Publication date: January 22, 2004
    Applicant: U.S. of America, represented by the Secretary, Department of Health and Human Services.
    Inventors: Lin Ji, John Dorrance Minna, Jack Roth, Michael Lerman
  • Publication number: 20030186238
    Abstract: The present invention provides novel cleavage agents and polymerases for the cleavage and modification of nucleic acid. The cleavage agents and polymerases find use, for example, for the detection and characterization of nucleic acid sequences and variations in nucleic acid sequences. In some embodiments, the 5′ nuclease activity of a variety of enzymes is used to cleave a target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
    Type: Application
    Filed: February 26, 2002
    Publication date: October 2, 2003
    Inventors: Hatim Allawi, Brad T. Argue, Christian Tor Bartholomay, LuAnne Chehak, Michelle L. Curtis, Peggy S. Eis, Jeff G. Hall, Hon S. Ip, Lin Ji, Michael Kaiser, Robert W. Kwiatkowski, Andrew A. Lukowiak, Victor Lyamichev, Natalie E. Lymaicheva, WuPo Ma, Bruce P. Neri, Sarah M. Olson, Marilyn C. Olson-Munoz, James J. Schaefer, Zbigniev Skrzypczynski, Tsetska Y. Takova, Lisa C. Thompson, Kevin L. Vedvik
  • Publication number: 20020164715
    Abstract: Tumor suppressor genes play a major role in the pathogenesis of human lung cancer and other cancers. Cytogenetic and allelotyping studies of fresh tumor and tumor-derived cell lines showed that cytogenetic changes and allele loss on the short arm of chromosome 3 (3p) are most frequently involved in about 90% of small cell lung cancers and greater than 50% of non-small cell lung cancers. A group of recessive oncogenes, Fus1, 101F6, Gene 21 (NPRL2), Gene 26 (CACNA2D2), Luca 1 (HYAL1), Luca 2 (HYAL2), PL6, 123F2 (RaSSFI), SEM A3 and Beta* (BLU), as defined by homozygous deletions in lung cancers, have been located and isolated at 3p21.3.
    Type: Application
    Filed: July 10, 2001
    Publication date: November 7, 2002
    Inventors: Lin Ji, John Dorrance Minna, Jack Roth, Michael Lerman