Patents by Inventor Linda M. Western

Linda M. Western has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080213767
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5?-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5?-nuclease to cleave the oligonucleotide to provide (i) a first fragment that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3? of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Application
    Filed: October 9, 2007
    Publication date: September 4, 2008
    Applicant: Third Wave Technologies, Inc.
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Publication number: 20020155548
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5′-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5′-nuclease to cleave the oligonucleotide to provide (i) a first fragment-that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3′ of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Application
    Filed: November 20, 2001
    Publication date: October 24, 2002
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 6368803
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5′-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5′-nuclease to cleave the oligonucleotide to provide (i) a first fragment that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3′ of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: April 9, 2002
    Assignee: Dade Behring Inc.
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 6124090
    Abstract: A method is disclosed for determining the presence of a polynucleotide analyte in a sample suspected of containing the analyte. The method comprises (a) forming as a result of the presence of an analyte a single stranded polynucleotide comprising a target polynucleotide binding sequence flanked by first and second polynucleotide sequences that differ from the sequence of the analyte or a sequence complementary to the analyte sequence, (b) forming multiple copies of the single stranded polynucleotide, and (c) detecting the single stranded polynucleotide. Also disclosed is a method of producing at least one copy of a single stranded polynucleotide.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: September 26, 2000
    Assignee: Behringwerke AG
    Inventors: Samuel Rose, Thomas C. Goodman, Linda M. Western, Martin Becker, Edwin F. Ullman
  • Patent number: 6121001
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5'-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5'-nuclease to cleave the oligonucleotide to provide (i) a first fragment that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3' of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: September 19, 2000
    Assignee: Dade Behring Marburg GmbH
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 6110677
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5'-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5'-nuclease to cleave the oligonucleotide to provide (i) a first fragment that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3' of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: August 29, 2000
    Assignee: Dade Behring Marburg GmbH
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 5882857
    Abstract: The present invention relates to an improvement in a method for amplifying a target sequence of a target polynucleotide. The method comprises combining a sample suspected of containing the target polynucleotide with reagents for amplifying the target sequence and subjecting the combination to conditions wherein the target sequence if present is amplified. The present improvement comprises including in the combination a control oligonucleotide and a control polynucleotide that has a sequence that is hybridizable with the control oligonucleotide. When the control oligonucleotide is bound to the control polynucleotide, the ability of a primer to chain extend along the control polynucleotide is reduced. Optionally, the control oligonucleotide is part of the control polynucleotide. The method finds particular application in the area of nucleic acid amplification and detection.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 16, 1999
    Assignee: Behringwerke AG
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 5882867
    Abstract: A method is disclosed for detecting a target polynucleotide sequence. The method comprises incubating an oligonucleotide with the target polynucleotide sequence and a nucleotide polymerase under isothermal conditions wherein at least one nucleotide is added to the 3'-terminus of the oligonucleotide to provide an extended oligonucleotide having the additional nucleotides. The presence of extended oligonucleotide is detected as an indication of the presence of the target polynucleotide sequence. The method has particular application to the detection of DNA.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 16, 1999
    Assignee: Dade Behring Marburg GmbH
    Inventors: Edwin F. Ullman, Linda M. Western, Samuel J. Rose
  • Patent number: 5827649
    Abstract: A method is disclosed for determining the presence of a polynucleotide analyte in a sample suspected of containing the analyte. The method comprises (a) forming as a result of the presence of an analyte a single stranded polynucleotide comprising a target polynucleotide binding sequence flanked by first and second polynucleotide sequences that differ from the sequence of the analyte or a sequence complementary to the analyte sequence, (b) forming multiple copies of the single stranded polynucleotide, and (c) detecting the single stranded polynucleotide. Also disclosed is a method of producing at least one copy of a single stranded polynucleotide.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: October 27, 1998
    Assignee: Behring Diagnostics GmbH
    Inventors: Samuel Rose, Thomas C. Goodman, Linda M. Western, Martin Becker, Edwin F. Ullman
  • Patent number: 5792614
    Abstract: A method is disclosed for modifying an oligonucleotide, which method has application to the detection of a polynucleotide analyte. An oligonucleotide is reversibly hybridized with a polynucleotide, for example, a polynucleotide analyte, in the presence of a 5'-nuclease under isothermal conditions. The polynucleotide analyte serves as a recognition element to enable a 5'-nuclease to cleave the oligonucleotide to provide (i) a first fragment that is substantially non-hybridizable to the polynucleotide analyte and (ii) a second fragment that lies 3' of the first fragment (in the intact oligonucleotide) and is substantially hybridizable to the polynucleotide analyte. At least a 100-fold molar excess of the first fragment and/or the second fragment are obtained relative to the molar amount of the polynucleotide analyte. The presence of the first fragment and/or the second fragment is detected, the presence thereof indicating the presence of the polynucleotide analyte.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: August 11, 1998
    Assignee: Dade Behring Marburg GmbH
    Inventors: Linda M. Western, Samuel J. Rose, Edwin F. Ullman
  • Patent number: 5612199
    Abstract: A method is disclosed for extending an extender probe to produce a single stranded polydeoxynucleotide that is free of unreacted extender probe and has two segments that are non-contiguous and complementary with each other. The method comprises the steps of (1) providing in combination (a) a polynucleotide having two non-contiguous, non-complementary nucleotide sequences S1 and S2 wherein S2 is 5' of S1 and is at least ten deoxynucleotides long, (b) an extender probe comprised of two deoxynucleotide sequences, wherein the sequence at the 3'-end of the extender probe (EP1) is hybridizable with S1 and the other of the deoxynucleotide sequences (EP2) is substantially identical to S2 and (c) means for modifying the 3'-end of extender probe that does not hybridize with the polynucleotide and (2) extending the extender probe along the polynucleotide wherein extender probe not hybridized to the polynucleotide becomes modified at its 3'-end.
    Type: Grant
    Filed: April 1, 1994
    Date of Patent: March 18, 1997
    Assignee: Behringwerke AG
    Inventors: Linda M. Western, Karen M. Hahnenberger, Samuel Rose, Martin Becker, Edwin F. Ullman
  • Patent number: 5595891
    Abstract: A method is disclosed for producing a single stranded polydeoxynucleotide having two segments that are non-contiguous and complementary with each other. The method comprises the steps of providing in combination (1) a polynucleotide having two non-contiguous, non-complementary nucleotide sequences S1 and S2 wherein S2 is 5' of S1 and is at least ten deoxynucleotides long and (2) an extender probe comprised of two deoxynucleotide sequences, wherein the sequence at the 3'-end of the extender probe is hybridizable with S1 and the other of the deoxynucleotide sequences is homologous to S2 and (b) extending the extender probe along the polynucleotide.
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: January 21, 1997
    Assignee: Behringwerke AG
    Inventors: Samuel Rose, Linda M. Western, Martin Becker, Edwin F. Ullman
  • Patent number: 5508178
    Abstract: A method is disclosed for determining the presence of a polynucleotide analyte in a sample suspected of containing the analyte. The method comprises (a) forming as a result of the presence of an analyte a single stranded polynucleotide comprising a target polynucleotide binding sequence flanked by first and second polynucleotide sequences that differ from the sequence of the analyte or a sequence complementary to the analyte sequence, (b) forming multiple copies of the single stranded polynucleotide, and (c) detecting the single stranded polynucleotide. Also disclosed is a method of producing at least one copy of a single stranded polynucleotide.
    Type: Grant
    Filed: February 9, 1994
    Date of Patent: April 16, 1996
    Inventors: Samuel Rose, Thomas C. Goodman, Linda M. Western, Martin Becker, Edwin F. Ullman
  • Patent number: 5439793
    Abstract: A method is disclosed for forming a single stranded polynucleotide having two segments that are non-contiguous and hybridizable with each other. The method comprises the step of providing in combination (1) a first polynucleotide sequence having a hydroxyl at its 3'-end, (2) a second polynucleotide sequence having a hydroxyl or phosphate group at its 5'-end, and (3) a ligase, wherein at least ten consecutive bases of one of the sequences can hybridize to the other of the sequences to form a duplex. The duplex is comprised of a non-hybridized single stranded portion of one of the polynucleotide sequences containing one of the ends and at least five bases. The combination is provided under conditions for forming the duplex and ligating the ends within the duplex. The method finds particular application in the detection of polynucleotide analytes.
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: August 8, 1995
    Assignee: Syntex (U.S.A.) Inc.
    Inventors: Samuel Rose, Linda M. Western