Patents by Inventor Lindsay A. Weaver, Jr.

Lindsay A. Weaver, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8611310
    Abstract: Techniques to improve the acquisition process in a spread spectrum environment. The signals from different CDMA systems are spread with different sets of PN sequences, with the PN sequences in each set being uncorrelated to the PN sequences in the other sets. The mobile station can attempt to acquire the pilot signal by processing the received signal with a first set of PN sequences corresponding to a first hypothesis of the particular signal being acquired. If acquisition of the pilot signal fails, a second set of PN sequences corresponding to a second hypothesis is selected and used to process the received signal. The PN sequences in the second set are uncorrelated to the PN sequences in the first set.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: December 17, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Peter J. Black, Roberto Padovani, Lindsay A. Weaver, Jr.
  • Patent number: 7839960
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the exemplary embodiment, transmit power of mobile unit signals is controlled based on signal power received by the mobile unit and power adjustment commands sent to the mobile unit.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: November 23, 2010
    Assignee: Qualcomm Incorporated
    Inventors: Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Lindsay A. Weaver, Jr., Charles E. Wheatley, III, Andrew J. Viterbi
  • Patent number: 7734260
    Abstract: Collisions between messages simultaneously transmitted by multiple spread-spectrum transmitters are reduced by distributing the transmissions over the available resources of the receiver. Each mobile station in a CDMA system uses one or more randomization methods to distribute its transmissions. In the first randomization, the mobile station time-delays its transmissions by a number of chips of the PN code with which it spreads the transmitted signal. In a second randomization, the mobile station randomly selects the PN code. In a third randomization, the mobile station inserts a random delay between successive message transmissions or probes if it does not receive an acknowledgement after a predetermined timeout period. A predetermined number of such transmissions is called a probe sequence. In a fourth randomization, the mobile station inserts a relatively long random delay between successive probe sequences if it does not receive an acknowledgement of any probe in the sequence.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: June 8, 2010
    Assignee: QUALCOMM Incorporated
    Inventors: Edward G. Tiedemann, Jr., Lindsay A. Weaver, Jr., Roberto Padovani
  • Patent number: 7426391
    Abstract: Collisions between messages simultaneously transmitted by multiple spread-spectrum transmitters are reduced by distributing the transmissions over the available resources of the receiver. Each mobile station in a CDMA system uses one or more randomization methods to distribute its transmissions. In the first randomization, the mobile station time-delays its transmissions by a number of chips of the PN code with which it spreads the transmitted signal. In a second randomization, the mobile station randomly selects the PN code. In a third randomization, the mobile station inserts a random delay between successive message transmissions or probes if it does not receive an acknowledgement after a predetermined timeout period. A predetermined number of such transmissions is called a probe sequence. In a fourth randomization, the mobile station inserts a relatively long random delay between successive probe sequences if it does not receive an acknowledgement of any probe in the sequence.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 16, 2008
    Assignee: Qualcomm Incorporated
    Inventors: Edward G. Tiedemann, Jr., Lindsay A. Weaver, Jr., Roberto Padovani
  • Patent number: 7151927
    Abstract: A method for checking the quality of service provided by a base station at a location remote from the base station, including transmitting signals between the base station and a call transceiver at the remote location, analyzing at least some of the signals at the remote location to formulate at least one parameter indicating the quality of the signals, and transmitting the at least one parameter from a control transceiver at the remote location to the base station.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: December 19, 2006
    Assignee: Qualcomm Incorporated
    Inventor: Lindsay A. Weaver, Jr.
  • Patent number: 7003021
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the cell-to-mobile link, pilot, sync, paging and voice channels are defined. Information communicated on the cell-to-mobile link channels are, in general, encoded, interleaved, bi-phase shift key (BPSK) modulated with orthogonal covering of each BPSK symbol along with quadrature phase shift key (QPSK) spreading of the covered symbols.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: February 21, 2006
    Assignee: Qualcomm Incorporated
    Inventors: Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Lindsay A. Weaver, Jr., Charles E. Wheatley, III, Andrew J. Viterbi
  • Patent number: 6985728
    Abstract: Collisions between messages simultaneously transmitted by multiple spread-spectrum transmitters are reduced by distributing the transmissions over the available resources of the receiver. Each mobile station in a CDMA system uses one or more randomization methods to distribute its transmissions. In the first randomization, the mobile station time-delays its transmissions by a number of chips of the PN code with which it spreads the transmitted signal. In a second randomization, the mobile station randomly selects the PN code. In a third randomization, the mobile station inserts a random delay between successive message transmissions or probes if it does not receive an acknowledgement after a predetermined timeout period. A predetermined number of such transmissions is called a probe sequence. In a fourth randomization, the mobile station inserts a relatively long random delay between successive probe sequences if it does not receive an acknowledgement of any probe in the sequence.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: January 10, 2006
    Assignee: QUALCOMM, Incorporated
    Inventors: Edward G. Tiedemann, Jr., Lindsay A. Weaver, Jr., Roberto Padovani
  • Patent number: 6693951
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned; with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the cell-to-mobile link, pilot, sync, paging and voice channels are defined. Information communicated on the cell-to-mobile link channels are, in general, encoded, interleaved, bi-phase shift key (BPSK) modulated with orthogonal covering of each BPSK symbol along with quadrature phase shift key (QPSK) spreading of the covered symbols.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: February 17, 2004
    Assignee: Qualcomm Incorporated
    Inventors: Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Lindsay A. Weaver, Jr., Charles E. Wheatley, III, Andrew J. Viterbi
  • Patent number: 6687238
    Abstract: The invention is a CDMA transmission control technology that includes various combinations of the following functionality: decresting, in-band to out-of-band ratio (RIO), power control, and spectral shaping. Decresting reduces peaks in the CDMA signal. RIO generates a ratio based on the signal strength of in-band versus out-of-band portions of the CDMA signal. Power control adjusts the gain of the CDMA signal based on quadrature signal calculations. Spectral shaping attenuates in-band portions of the CDMA signal adjacent to the corner frequencies. The CDMA transmission control technology can be implemented in a CDMA base station to extend range and capacity.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: February 3, 2004
    Assignee: Qualcomm Incorporated
    Inventors: Anthony C. K. Soong, Lindsay A. Weaver, Jr., Brian K. Harms, Thomas J. Funk, Larry D. Flowers, Bruce S. Schwartz, Todd A. Pressley, Robin Night
  • Patent number: 6661833
    Abstract: Techniques to improve the acquisition process in a spread spectrum environment. The signals from different CDMA systems are spread with different sets of PN sequences, with the PN sequences in each set being uncorrelated to the PN sequences in the other sets. By using uncorrelated PN sequences, the likelihood of detecting a pilot signal from an undesired system is reduced or minimized, and the mean time to acquisition of the pilot signal from the desired system is improved. The mobile station can attempt to acquire the pilot signal by processing the received signal with a first set of PN sequences corresponding to a first hypothesis of the particular signal being acquired. If acquisition of the pilot signal fails, a second set of PN sequences corresponding to a second hypothesis is selected and used to process the received signal. The PN sequences in the second set are uncorrelated to the PN sequences in the first set.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: December 9, 2003
    Assignee: Qualcomm Incorporated
    Inventors: Peter J. Black, Roberto Padovani, Lindsay A. Weaver, Jr.
  • Patent number: 6618429
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the cell-to-mobile link, pilot, sync, paging and voice channels are defined. Information communicated on the cell-to-mobile link channels are, in general, encoded, interleaved, bi-phase shift key (BPSK) modulated with orthogonal covering of each BPSK symbol along with quadrature phase shift key (QPSK) spreading of the covered symbols.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: September 9, 2003
    Assignee: Oualcomm Incorporated
    Inventors: Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Lindsay A. Weaver, Jr., Charles E. Wheatley, III, Andrew J. Viterbi
  • Patent number: 6615050
    Abstract: Collisions between messages simultaneously transmitted by multiple spread-spectrum transmitters are reduced by distributing the transmissions over the available resources of the receiver. The transmitters may be mobile stations and the receiver may be a base station in a CDMA cellular telephone system. Each mobile station uses one or more randomization methods to distribute its transmissions. In the first randomization, the mobile station time-delays its transmissions by a number of chips of the PN code with which it spreads the transmitted signal. A hash function produces the number from an identification number uniquely associated with that mobile station. In a second randomization, the mobile station randomly selects the PN code. In a third randomization, the mobile station inserts a random delay between successive message transmissions or probes if it does not receive an acknowledgement after a predetermined timeout period. A predetermined number of such transmissions is called a probe sequence.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: September 2, 2003
    Assignee: Qualcomm Incorporated
    Inventors: Edward G. Tiedemann, Jr., Lindsay A. Weaver, Jr., Roberto Padovani
  • Patent number: 6515961
    Abstract: The invention is a CDMA decresting technology that reduces or eliminates peaks in the CDMA signal. The CDMA technology generates a correction signal in response to peaks in the CDMA signal that exceed a value. The value typically corresponds to the maximum power level of a power amplifier. The CDMA technology combines the correction signal with the CDMA signal to generate a decrested CDMA signal with reduced peaks. In some examples of the invention, the CDMA technology processes polar coordinate representations of the quadrature components of the CDMA signal to generate the correction signal. Using the invention, the power amplifier in a CDMA base station can operate at increased power levels without exceeding out-of-band signal power limitations. As a result, the base station operates more efficiently and with a greater range or capacity.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: February 4, 2003
    Assignee: Qualcomm Incorporated
    Inventors: Lindsay A. Weaver, Jr., Brian K. Harms, Anthony C. K. Soong
  • Patent number: 6286994
    Abstract: A system, method and computer program product that uses an expected output power level to compensate for slowly changing unintentional power fluctuations in a signal transmission system such that the actual transmitted power matches a calculated desired transmit power. Digital expected power data is sampled and filtered to generate an expected output power level. Actual output data is sampled and filtered to generate an actual output power level. A comparator periodically compares the expected output power level to the actual output power level. Preferably, the comparator first removes a correction value from the actual output power level that was added to the transmit signal to correct for unintentional power fluctuations. The resultant ratio or difference is sent to a correction module which generates a correction value therefrom. The correction value is converted to a dB quantity and added to existing correction values.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: September 11, 2001
    Assignee: Qualcomm Incorporated
    Inventors: Robert W. Boesel, Levent Aydin, Lindsay A. Weaver, Jr.
  • Patent number: 6108364
    Abstract: A method and apparatus for time division duplex (TDD) repeating a spread spectrum signal, where spread spectrum signal is comprised of a series of code symbol modulated with a pseudonoise (PN) sequence. The TDD repeater receives intermittently the spread spectrum signal at a location remote from a source supplying the spread spectrum signal. The TDD repeater amplifies and delays the received spread spectrum signal by a predetermined amount. The TDD repeater transmits intermittently the delayed amplified received spread spectrum signal such that the TDD is not receiving the spread spectrum signal when it is transmitting the signal energy.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: August 22, 2000
    Assignee: Qualcomm Incorporated
    Inventors: Lindsay A. Weaver, Jr., Franklin P. Antonio, Richard F. Dean
  • Patent number: 6044103
    Abstract: A novel and improved method and apparatus for generating a reduced peak amplitude high data rate channel comprised of a set of lower rate channels is described. The set of lower rate channels are phase rotated before being summed and transmitted. The amount of phase rotation is dependent on the number of channels used to form the higher rate channel. In an embodiment where two lower rate channels are used, the in-phase and quadrature-phase components of the two channels are complex multiplied before upconversion with an in-phase and quadrature-phase sinusoids. For a high rate channel comprised of more than two lower rate channels, the in-phase and quadrature-phase component of each channel is upconverted with a set of sinusoids that are phase offset from one another.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: March 28, 2000
    Assignee: Qualcomm Inc.
    Inventor: Lindsay A. Weaver, Jr.
  • Patent number: 5956673
    Abstract: A first remote vocoder receives analog voice and produces packetized vocoder data which is transmitted over a wireless link. A first local vocoder receives the packetized vocoder data from the wireless link. The first local vocoder converts the packetized data to a multibit PCM output. The first local vocoder also adds a detection code to one of the least significant bits (LSB) of the PCM output. The first local vocoder passes the PCM signal to the PSTN from the second end user. The first local vocoder also receives PCM input over the PSTN. The first local vocoder constantly monitors the least significant bit of the PCM input for a detection code indicating that a second local vocoder is connected at the receiving end. If the first local vocoder detects the detection code from the second local vocoder, it begins to substitute packetized data and a redundancy check for a second one of the LSB's of the outgoing PCM. The first local vocoder also begins to monitor the second one of the LSB's of the incoming PCM.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: September 21, 1999
    Inventors: Lindsay A. Weaver, Jr., S. Katherine Lam, William Gardner, Paul Jacobs
  • Patent number: 5943361
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the cell-to-mobile link, pilot, sync, paging and voice channels are defined. Information communicated on the cell-to-mobile link channels are, in general, encoded, interleaved, bi-phase shift key (BPSK) modulated with orthogonal covering of each BPSK symbol along with quadrature phase shift key (QPSK) spreading of the covered symbols.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: August 24, 1999
    Assignee: Qualcomm Incorporated
    Inventors: Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Lindsay A. Weaver, Jr., Charles E. Wheatley, III, Andrew J. Viterbi
  • Patent number: 5933787
    Abstract: A method and apparatus providing softer handoff of a mobile unit between sectors of a common base station. A sectorized base station comprises a set of demodulation elements. Each demodulation element may be assigned to a signal from one of a plurality of sectors. The output of the demodulators are combined before the decoding process independent of the sector from which the data originated. This configuration provides improved output data reliability, more stable power control, and more efficient use of resources at the base station.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: August 3, 1999
    Assignee: Qualcomm Incorporated
    Inventors: Klein S. Gilhousen, Roberto Padovani, Lindsay A. Weaver, Jr.
  • Patent number: 5917811
    Abstract: In a communications network, a network user communicates using a remote unit with another user via at least one base station. The network is comprised of first and second mobile switching control stations respectively controlling communications through a first set of base stations including a first base station and through a second set of base stations including a second base station. To direct communications between the remote unit and the first and second base stations the first base station measures a round trip delay of an active communication signal between the first base station and the remote unit. The remote unit measures a first phase offset of a pilot signal received from a first candidate base station and reports it to the first mobile switching center via the first base station.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: June 29, 1999
    Assignee: Qualcomm Incorporated
    Inventors: Lindsay A. Weaver, Jr., Toni Lee Holcman, David B. Munsinger, Noam A. Ziv, Kenneth R. Baker