Patents by Inventor Linn C. Hoover

Linn C. Hoover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10894411
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A flexible blade is positioned to contact the printhead when the printhead is not in contact with the cap. The flexible blade is adapted to fold over to spread a liquid solution on the nozzles in a first direction, and the flexible blade is adapted to remove excess amounts of the liquid solution from the nozzles in a second direction. A humidifier is connected to the cap and adapted to supply a moisture form of the liquid solution to the sealed space. A moisture sensor is connected to the cap. The humidifier is adapted to vary supply of the moisture to the sealed space based on the amount of moisture detected by the moisture sensor.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 19, 2021
    Assignee: Xerox Corporation
    Inventors: Michael J. Levy, Seemit Praharaj, Paul J. McConville, Jason M. LeFevre, Linn C. Hoover, Chu-heng Liu, David A. VanKouwenberg, Douglas K. Herrmann, John T. Newell, Richard A. Campbell, Ali R. Dergham, Glenn D. Batchelor, Robert A. Clark, Senthil Sivaraman
  • Patent number: 10857798
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A heated evaporator is connected to the cap and is adapted to evaporate an ink-compatible liquid to form a water and/or solvent vapor and supply the water and/or solvent vapor to the sealed space to protect the liquid ink in the nozzles. An insulator thermally insulates the heated evaporator from the printhead. This prevents the ink in the nozzles from drying and prevents the nozzles from clogging.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: December 8, 2020
    Assignee: Xerox Corporation
    Inventors: Paul J. McConville, Jason M. LeFevre, Michael J. Levy, Seemit Praharaj, Chu-heng Liu, David A. VanKouwenberg, Linn C. Hoover, Douglas K. Herrmann
  • Patent number: 10821731
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A heated evaporator is connected to the cap and is adapted to evaporate an ink-compatible liquid to form a water and/or solvent vapor and supply the water and/or solvent vapor to the sealed space to protect the liquid ink in the nozzles. An insulator thermally insulates the heated evaporator from the printhead. This prevents the ink in the nozzles from drying and prevents the nozzles from clogging.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 3, 2020
    Assignee: Xerox Corporation
    Inventors: Paul J. McConville, Jason M. LeFevre, Michael J. Levy, Seemit Praharaj, Chu-heng Liu, David A. VanKouwenberg, Linn C. Hoover, Douglas K. Herrmann
  • Patent number: 10814631
    Abstract: Ink stabilizing material is applied to rotatable panels within a cap of an inkjet cartridge resting structure. The rotatable panels then rotate to contact an inkjet printhead when the printhead contacts the cap. Continuous periodic flushing of the printhead is performed while the rotatable panels are contacting the printhead by periodically and repeatedly alternating between ejecting a mixture of the ink stabilizing material and ink from the nozzles, and drawing the mixture of the ink stabilizing material and the ink back into the nozzles.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 27, 2020
    Assignee: Xerox Corporation
    Inventors: Linn C. Hoover, Jason M. LeFevre, Douglas K. Herrmann, Chu-heng Liu, Paul J. McConville, David A. VanKouwenberg, Seemit Praharaj, Michael J. Levy
  • Patent number: 10814653
    Abstract: A roller for a transport belt of a vacuum transport assembly includes an elongate cylindrical body adapted for a rotatably fixed connection to a vacuum transport assembly. An outer surface of the roller defines a hollow inner channel, which extends along an axial region of the body. The outer surface is a running surface for a transport belt. An inlet at one end of the hollow inner channel receives air from an air source. Perforations are formed in the outer surface for allowing air pressure to be discharged from the hollow inner channel toward the transport belt. The air diffuses through the transport belt to detack a sheet from the transport belt.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: October 27, 2020
    Assignee: Xerox Corporation
    Inventors: Richard Campbell, Linn C. Hoover
  • Patent number: 10800174
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. An evaporator is connected to the cap and is adapted to control evaporation a water-incompatible or solvent-incompatible liquid into the sealed space to condense an ink-blocking film on the surface of the liquid ink in the nozzles to protect the liquid ink in the nozzles. This prevents the ink in the nozzles from drying and prevents the nozzles from clogging.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 13, 2020
    Assignee: Xerox Corporation
    Inventors: Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Jason M. LeFevre, Seemit Praharaj, Michael J. Levy, David A. VanKouwenberg, Linn C. Hoover
  • Publication number: 20200316947
    Abstract: An inkjet printer is configured with capping stations for storing printheads in the printer during periods of printer inactivity so the viscosity of the ink in the nozzles of the inkjets of the printheads does not increase significantly. Each capping station has a printhead receptacle that encloses a volume, a planar member configured to move between a first position at which the planar member is located within the printhead receptacle and a second position at which the planar member is external of the printhead receptacle, a first actuator operatively connected to the planar member, the first actuator being configured to move the planar member from the first position to the second position, and a controller configured to operate the first actuator to move the planar member from the first position to the second position to mate the planar member with a face of a printhead.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: David A. VanKouwenberg, Linn C. Hoover, Michael J. Levy, Jason M. LeFevre, Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Seemit Praharaj
  • Publication number: 20200316851
    Abstract: A system for producing three-dimensional objects forms fluid paths within the support structure to facilitate the removal of the support structure following manufacture of the object. The system includes a first ejector configured to eject a first material towards a platen to form an object, a second ejector configured to eject a second material towards the platen to form support for portions of the object, at least one portion of the support having a body with at least one fluid path that connects at least one opening in the body to at least one other opening in the body, and a fluid source that connects to the at least one fluid path of the support to enable fluid to flow through the at least one fluid path to remove at least an inner portion of the support from the object.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: David A. Mantell, Andrew W. Hays, Linn C. Hoover, Ron E. Dufort, Erwin Ruiz, Patrick J. Howe
  • Publication number: 20200254761
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A flexible blade is positioned to contact the printhead when the printhead is not in contact with the cap. The flexible blade is adapted to fold over to spread a liquid solution on the nozzles in a first direction, and the flexible blade is adapted to remove excess amounts of the liquid solution from the nozzles in a second direction. A humidifier is connected to the cap and adapted to supply a moisture form of the liquid solution to the sealed space. A moisture sensor is connected to the cap. The humidifier is adapted to vary supply of the moisture to the sealed space based on the amount of moisture detected by the moisture sensor.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Xerox Corporation
    Inventors: Michael J. Levy, Seemit Praharaj, Paul J. McConville, Jason M. LeFevre, Linn C. Hoover, Chu-heng Liu, David A. VanKouwenberg, Douglas K. Herrmann, John T. Newell, Richard A. Campbell, Ali R. Dergham, Glenn D. Batchelor, Robert A. Clark, Senthil Sivaraman
  • Publication number: 20200254765
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A heated evaporator is connected to the cap and is adapted to evaporate an ink-compatible liquid to form a water and/or solvent vapor and supply the water and/or solvent vapor to the sealed space to protect the liquid ink in the nozzles. An insulator thermally insulates the heated evaporator from the printhead. This prevents the ink in the nozzles from drying and prevents the nozzles from clogging.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Xerox Corporation
    Inventors: Paul J. McConville, Jason M. LeFevre, Michael J. Levy, Seemit Praharaj, Chu-heng Liu, David A. VanKouwenberg, Linn C. Hoover, Douglas K. Herrmann
  • Publication number: 20200254766
    Abstract: Ink stabilizing material is applied to rotatable panels within a cap of an inkjet cartridge resting structure. The rotatable panels then rotate to contact an inkjet printhead when the printhead contacts the cap. Continuous periodic flushing of the printhead is performed while the rotatable panels are contacting the printhead by periodically and repeatedly alternating between ejecting a mixture of the ink stabilizing material and ink from the nozzles, and drawing the mixture of the ink stabilizing material and the ink back into the nozzles.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Xerox Corporation
    Inventors: Linn C. Hoover, Jason M. LeFevre, Douglas K. Herrmann, Chu-heng Liu, Paul J. McConville, David A. VanKouwenberg, Seemit Praharaj, Michael J. Levy
  • Publication number: 20200254762
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. An evaporator is connected to the cap and is adapted to control evaporation a water-incompatible or solvent-incompatible liquid into the sealed space to condense an ink-blocking film on the surface of the liquid ink in the nozzles to protect the liquid ink in the nozzles. This prevents the ink in the nozzles from drying and prevents the nozzles from clogging.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Xerox Corporation
    Inventors: Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Jason M. LeFevre, Seemit Praharaj, Michael J. Levy, David A. VanKouwenberg, Linn C. Hoover
  • Patent number: 10723152
    Abstract: A printer includes a printhead assembly and a dryer. A transport mechanism conveys the printed media in a downstream direction between the printhead assembly and a dryer and between the dryer and an output device. The transport mechanism includes an electric field-generating transport member. The transport member includes a continuous belt supported by rollers. The belt is driven to transport the printed media on an upper surface of the belt. The belt includes an electrically-insulating inner layer and an electrically-insulating outer layer. First and second sets of electrical conductors are positioned intermediate the inner and outer layers. Electrical conductors in the second set are grounded and alternate with electrical conductors in the first set, A charging unit selectively applies a voltage to only a subset of the electrical conductors in the first set at a time, to electrostatically attract the printed media to the upper surface of the belt.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 28, 2020
    Assignee: XEROX CORPORATION
    Inventors: Paul M. Fromm, Erwin Ruiz, Linn C. Hoover, David A. VanKouwenberg
  • Patent number: 10710298
    Abstract: A system for producing three-dimensional objects forms fluid paths within the support structure to facilitate the removal of the support structure following manufacture of the object. The system includes a first ejector configured to eject a first material towards a platen to form an object, a second ejector configured to eject a second material towards the platen to form support for portions of the object, at least one portion of the support having a body with at least one fluid path that connects at least one opening in the body to at least one other opening in the body, and a fluid source that connects to the at least one fluid path of the support to enable fluid to flow through the at least one fluid path to remove at least an inner portion of the support from the object.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: July 14, 2020
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Andrew W. Hays, Linn C. Hoover, Ron E. Dufort, Erwin Ruiz, Patrick J. Howe
  • Patent number: 10710370
    Abstract: An inkjet printer is configured with capping stations for storing printheads in the printer during periods of printer inactivity so the viscosity of the ink in the nozzles of the inkjets of the printheads does not increase significantly. Each capping station has a printhead receptacle that encloses a volume, a planar member configured to move between a first position at which the planar member is located within the printhead receptacle and a second position at which the planar member is external of the printhead receptacle, a first actuator operatively connected to the planar member, the first actuator being configured to move the planar member from the first position to the second position, and a controller configured to operate the first actuator to move the planar member from the first position to the second position to mate the planar member with a face of a printhead.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Xerox Corporation
    Inventors: David A. VanKouwenberg, Linn C. Hoover, Michael J. Levy, Jason M. LeFevre, Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Seemit Praharaj
  • Patent number: 10696052
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink onto print media. A dispenser dispenses an ink stabilizing material into the cap. A blocking structure is positioned in the cap to contact vent openings of the inkjet printhead when the inkjet printhead is in the cap and is in a location to submerge the nozzles in the ink stabilizing material in the cap. An ink control device draws the ink stabilizing material into nozzles of the inkjet printhead when the vent openings are blocked by the blocking structure. The ink control device subsequently draws the ink stabilizing material into the vent openings when the vent openings are separated from the blocking structure.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 30, 2020
    Assignee: Xerox Corporation
    Inventors: Jason M. LeFevre, Douglas K. Herrmann, Paul J. McConville, Chu-heng Liu, Seemit Praharaj, Michael J. Levy, David A. VanKouwenberg, Linn C. Hoover
  • Publication number: 20200197976
    Abstract: A system treats uneven surfaces of additive manufactured objects to improve the transparency and glossiness of the surfaces. The system operates an actuator to dip the additive manufactured object into a bath of fluid material that is the same as the material used to form the uneven surface to smooth the surface of the object and operates a sprayer to apply another fluid material to a surface of the object that is identified as being rougher based on the object's geometric data. A heater is provided to dry non-UV curable material applied to the object and a source of UV radiation is provided to cure UV curable material applied to the object.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 25, 2020
    Inventors: Ron E. Dufort, Linn C. Hoover, Erwin Ruiz, Mandakini Kanungo
  • Patent number: 10688778
    Abstract: An imaging system includes a substrate cooler that reduces the temperature of substrates bearing dried ink images. The substrate cooler has a plurality of rollers, at least one actuator operatively connected to the plurality of rollers, and a controller operatively connected to the least one actuator. The controller is configured to operate the at least one actuator to move the rollers relative to one another to vary the length of the path along which the substrates move through the substrate cooler.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 23, 2020
    Assignee: Xerox Corporation
    Inventors: Paul M. Fromm, Erwin Ruiz, David A. VanKouwenberg, Linn C. Hoover
  • Publication number: 20200189281
    Abstract: An inkjet printer is configured with capping stations for storing printheads in the printer during periods of printer inactivity so the viscosity of the ink in the nozzles of the inkjets of the printheads does not increase significantly. Each capping station has a printhead receptacle that encloses a volume, a planar member configured to move between a first position at which the planar member is located within the printhead receptacle and a second position at which the planar member is external of the printhead receptacle, a first actuator operatively connected to the planar member, the first actuator being configured to move the planar member from the first position to the second position, and a controller configured to operate the first actuator to move the planar member from the first position to the second position to mate the planar member with a face of a printhead.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: David A. VanKouwenberg, Linn C. Hoover, Michael J. Levy, Jason M. LeFevre, Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Seemit Praharaj
  • Publication number: 20200171853
    Abstract: A printer is configured to apply marking material to print media to create a printed item, and a transport belt is positioned to receive the printed item from the printer and is configured to dry the marking material on the printed item. The transport belt has a middle layer attached between outer and inner layers, and the printed item contacts the outer layer. The outer and inner layers are non-perforated entangled fiber materials that are porous and that are more flexible than the middle layer.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Applicant: Xerox Corporation
    Inventors: Christopher M. Mieney, Paul M. Fromm, Linn C. Hoover