Patents by Inventor Lo Hsieh

Lo Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984478
    Abstract: A method includes forming a first portion of a spacer layer over a first fin and a second portion of the spacer layer over a second fin, performing a first etching process to recess the first portion of the spacer layer with respect to the second portion of the spacer layer to form first spacers on sidewalls of the first fin, subsequently performing a second etching process to recess the second portion of the spacer layer with respect to the first spacers to form second spacers on sidewalls of the second fin, where the second spacers are formed to a height greater than that of the first spacers, and forming a first epitaxial source/drain feature and a second epitaxial source/drain feature between the first spacers and the second spacers, respectively, where the first epitaxial source/drain feature is larger than that of the second epitaxial source/drain feature.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu Wen Wang, Chih-Teng Liao, Chih-Shan Chen, Jui Fu Hsieh, Dave Lo
  • Patent number: 11926017
    Abstract: A cleaning process monitoring system, comprising: a cleaning container comprising an inlet for receiving a cleaning solution and an outlet for draining a waste solution; a particle detector coupled to the outlet and configured to measure a plurality of particle parameters associated with the waste solution so as to provide a real-time monitoring of the cleaning process; a pump coupled to the cleaning container and configured to provide suction force to draw solution through the cleaning system; a controller coupled to the pump and the particle detector and configured to receive the plurality of particle parameters from the particle detector and to provide control to the cleaning system; and a host computer coupled to the controller and configured to provide at least one control parameter to the controller.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Charlie Wang, Yu-Ping Tseng, Y. J. Chen, Wai-Ming Yeung, Chien-Shen Chen, Danny Kuo, Yu-Hsuan Hsieh, Hsuan Lo
  • Patent number: 11920304
    Abstract: The present invention describes a method for preparing graphene by mixing graphite and carbon nanofibrils. The prepared graphene can be used to form nanopaper. The present invention also provides a method of preparing nanopaper by suspending cellulose nanofibrils and graphene, followed by vacuum filtering of the suspension.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: March 5, 2024
    Assignee: The Regents of the University of California
    Inventors: You-Lo Hsieh, Xuezhu Xu
  • Patent number: 11549854
    Abstract: The present disclosure provides an aerogel comprising conductive polymers and cellulose nanofibrils (CNF). The present disclosure also provides a sensor comprising the aerogels of the present invention.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: January 10, 2023
    Assignee: The Regents of the University of California
    Inventors: You-Lo Hsieh, Jian Zhou
  • Publication number: 20220378713
    Abstract: The present invention provides compositions of soy protein gel fibers, soy protein fiber membranes, and soy protein films. The present invention also provides methods of making the soy protein compositions and also uses of the compositions.
    Type: Application
    Filed: October 1, 2020
    Publication date: December 1, 2022
    Inventors: You-Lo Hsieh, Xingchen Chen
  • Publication number: 20220195148
    Abstract: The present disclosure provides a method for preparing an aerogel or a foam, the method comprising: forming a reaction mixture comprising a cellulose nanofibril gel, a first solvent, and one or more crosslinking agents under conditions sufficient to crosslink the gel; and contacting the crosslinked gel with a second solvent under conditions sufficient to dry the crosslinked gel, thereby forming an aerogel or foam.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 23, 2022
    Inventors: YOU-LO HSIEH, FENG JIANG
  • Patent number: 11248107
    Abstract: The present disclosure provides a method for preparing an aerogel or a foam, the method comprising: forming a reaction mixture comprising a cellulose nanofibril gel, a first solvent, and one or more crosslinking agents under conditions sufficient to crosslink the gel; and contacting the crosslinked gel with a second solvent under conditions sufficient to dry the crosslinked gel, thereby forming an aerogel or foam.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 15, 2022
    Assignee: The Regents of the University of California
    Inventors: You-Lo Hsieh, Feng Jiang
  • Publication number: 20210381167
    Abstract: The present invention describes a method for preparing graphene by mixing graphite and carbon nanofibrils. The prepared graphene can be used to form nanopaper. The present invention also provides a method of preparing nanopaper by suspending cellulose nanofibrils and graphene, followed by vacuum filtering of the suspension.
    Type: Application
    Filed: October 28, 2019
    Publication date: December 9, 2021
    Inventors: You-Lo HSIEH, Xuezhu XU
  • Publication number: 20210156051
    Abstract: The present disclosure provides a coaxial fiber comprising a cellulose fiber exterior, and a hollow interior, wherein the aerogel occupies the hollow interior of the cellulose fiber. The present disclosure also provides a method of making the coaxial fiber, and a method of maintain a temperature differential in two zones using the coaxial fibers described herein.
    Type: Application
    Filed: November 19, 2020
    Publication date: May 27, 2021
    Inventors: You-Lo HSIEH, Jian ZHOU
  • Publication number: 20200363273
    Abstract: The present disclosure provides an aerogel comprising conductive polymers and cellulose nanofibrils (CNF). The present disclosure also provides a sensor comprising the aerogels of the present invention.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 19, 2020
    Inventors: You-Lo HSIEH, Jian ZHOU
  • Publication number: 20190309144
    Abstract: The present disclosure provides a method for preparing an aerogel or a foam, the method comprising: forming a reaction mixture comprising a cellulose nanofibril gel, a first solvent, and one or more crosslinking agents under conditions sufficient to crosslink the gel; and contacting the crosslinked gel with a second solvent under conditions sufficient to dry the crosslinked gel, thereby forming an aerogel or foam.
    Type: Application
    Filed: March 22, 2019
    Publication date: October 10, 2019
    Inventors: YOU-LO HSIEH, FENG JIANG
  • Patent number: 7076870
    Abstract: A surface-mount package for an oscillator crystal blank is made from a metal sheet substrate. Half-etched cavities are formed on one side of the sheet. The half-etched cavities are filled in with an insulator. The center of the insulator is drilled until metal is reached, leaving insulator on the sidewalls of the resulting drilled via. The bottom of the drilled via is plated with a contact metal such as nickel-gold, and then the entire drilled via is filled in with metal such as copper to form via-metal. An external metal surface-mount pad is formed on the surface of each via-metal. The metal sheet is flipped over, and a larger inner cavity etched through until the contact metal over the via-metal is reached. Conductive epoxy is placed on the contact metal, and electrodes on the crystal blank are attached to conductive epoxy.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: July 18, 2006
    Assignee: Pericom Semiconductor Corp.
    Inventor: Wen-Lo Hsieh
  • Publication number: 20060032051
    Abstract: A surface-mount package for an oscillator crystal blank is made from a metal sheet substrate. Half-etched cavities are formed on one side of the sheet. The half-etched cavities are filled in with an insulator. The center of the insulator is drilled until metal is reached, leaving insulator on the sidewalls of the resulting drilled via. The bottom of the drilled via is plated with a contact metal such as nickel-gold, and then the entire drilled via is filled in with metal such as copper to form via-metal. An external metal surface-mount pad is formed on the surface of each via-metal. The metal sheet is flipped over, and a larger inner cavity etched through until the contact metal over the via-metal is reached. Conductive epoxy is placed on the contact metal, and electrodes on the crystal blank are attached to conductive epoxy.
    Type: Application
    Filed: August 16, 2004
    Publication date: February 16, 2006
    Applicant: PERICOM SEMICONDUCTOR CORP.
    Inventor: Wen-Lo Hsieh
  • Publication number: 20040241436
    Abstract: The present invention provides nano-porous fibers and protein membrane compositions. In certain embodiments, continuous fiber compositions are provided having nanometer sized diameters and surface pores. In another embodiment, a protein membrane composition is provided comprising a protein; and a polymer, wherein the protein and the polymer are electrospun to form a protein membrane composition. In certain instance, the protein is covalently bound to the fiber.
    Type: Application
    Filed: January 20, 2004
    Publication date: December 2, 2004
    Applicant: The Regents of the University of California
    Inventors: You-Lo Hsieh, Jiangbing Xie, Yuhong Wang, Hong Chen, Lei Li, Lifeng Zhang, Corine Cecile
  • Publication number: 20030119172
    Abstract: Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55° C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25° C.).
    Type: Application
    Filed: August 8, 2002
    Publication date: June 26, 2003
    Applicant: The Regents of the University of California
    Inventors: You-Lo Hsieh, Mary Michelle Hartzell, Matthew G. Boston, Kathleen A. Clarkson, Katherine D. Collier, Thomas P. Graycar, Edmund A. Larenas
  • Patent number: 6521484
    Abstract: The present invention provides a mold injection method for semiconductor device by which the problem of residual metal is overcome. The inventive method comprises following steps: die attaching; wire bonding; attaching solder-resisting tape around the die; molding; removing the older-resisting tape; marking; ball placement: and singulation.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: February 18, 2003
    Assignee: Orient Semiconductor Electronics, Ltd.
    Inventor: Wen-Lo Hsieh
  • Publication number: 20020115193
    Abstract: Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55° C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25° C.).
    Type: Application
    Filed: December 27, 1999
    Publication date: August 22, 2002
    Inventors: YOU-LO HSIEH, MARY MICHELLE HARTZELL, MATTHEW G. BOSTON, KATHLEEN A. CLARKSON, KATHERINE D. COLLIER, THOMAS P. GRAYCAR, EDMUND A. LARENAS
  • Patent number: 6436696
    Abstract: Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55° C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25° C.).
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: August 20, 2002
    Assignees: The Regents of the University of California, Genencor International, Inc.
    Inventors: You-lo Hsieh, Mary Michelle Hartzell, Matthew G. Boston, Kathleen A. Clarkson, Katherine D. Collier, Thomas P. Graycar, Edmund A. Larenas
  • Patent number: 6066494
    Abstract: Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55.degree. C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25.degree. C.).
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: May 23, 2000
    Assignee: The Regents of the University of California
    Inventors: You-lo Hsieh, Mary Michelle Hartzell, Matthew G. Boston, Kathleen A. Clarkson, Katherine D. Collier, Thomas P. Graycar, Edmund A. Larenas
  • Patent number: 6033934
    Abstract: A semiconductor chip fabrication method, including the steps of: (a) attaching dies to a chip carrier and then bonding lead wires to the dies, (b) adhering heat-resisting plastic strips to the chip carrier and connecting them to each die at one corner for guiding a molten resin to the dies, (c) pouring a molten resin out of nozzles of a molding apparatus, permitting the molten resin to be guided by the heat-resisting plastic strips to the dies and then molded on the dies, and (d) marking the molded dies with marks and placing them with balls, and then separating the individually molded dies from one other.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: March 7, 2000
    Assignee: Orient Semiconductor Electronics Ltd.
    Inventor: Wen-Lo Hsieh