Patents by Inventor Logan Jackson

Logan Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240182779
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: February 9, 2024
    Publication date: June 6, 2024
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20240174914
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: June 16, 2023
    Publication date: May 30, 2024
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Patent number: 11781055
    Abstract: Emulsions, treatment fluids and methods for treating subterranean formations are provided, wherein the emulsions comprise water, a water-immiscible liquid, one or more polymers, one or more ethoxylated amine compounds and optionally, one or more organic or inorganic salts. The emulsions are particularly suitable for use in harsh brine conditions.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: October 10, 2023
    Assignee: KEMIRA OYJ
    Inventors: Paul Waterman, Logan Jackson, Danny Nguyen, Ronald Robinson
  • Patent number: 11753580
    Abstract: An inverse emulsion composition comprising: one or more hydrophobic liquids having a boiling point at least about 100° C.; up to about 38% by weight of one or more acrylamide-(co)polymers; one or more emulsifier surfactants; and one or more inverting surfactants; wherein, when the composition is inverted in an aqueous solution, it provides an inverted solution having a filter ratio using a 1.2 micron filter (FR1.2) of about 1.5 or less.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: September 12, 2023
    Assignee: KEMIRA OYJ
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis
  • Patent number: 11299409
    Abstract: Provided herein are liquid polymer (LP) compositions comprising an acrylamide (co)polymer, as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of acrylamide (co)polymer of from about 50 to about 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in dewatering, clarification, flocculation and/or thickening applications, and the like.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 12, 2022
    Assignees: KEMIRA OYJ, CHEVRON U.S.A. INC.
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik
  • Patent number: 11242653
    Abstract: A strength additive system for manufacturing paper, board, tissue or the like includes preferably as separate components, a cationic strength agent, such as a cationic polymer with aldehyde functional groups, and an anionic copolymer obtained by polymerization of a reaction mixture including (meth)acrylamide and anionic monomers, the standard viscosity of the obtained copolymer being in a range of 1.5-5.0 mPas. A method for manufacturing of a paper, board, tissue or the like is further disclosed.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 8, 2022
    Assignee: Kemira Oyj
    Inventors: Logan Jackson, Chen Lu, Jenna Rabideau
  • Publication number: 20220033706
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 3, 2022
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Patent number: 11084973
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: August 10, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20210147741
    Abstract: Emulsions, treatment fluids and methods for treating subterranean formations are provided, wherein the emulsions comprise water, a water-immiscible liquid, one or more polymers, one or more ethoxylated amine compounds and optionally, one or more organic or inorganic salts. The emulsions are particularly suitable for use in harsh brine conditions.
    Type: Application
    Filed: January 5, 2021
    Publication date: May 20, 2021
    Inventors: Paul Waterman, Logan Jackson, Danny Nguyen, Ronald Robinson
  • Patent number: 10899955
    Abstract: Emulsions, treatment fluids and methods for treating subterranean formations are provided, wherein the emulsions comprise water, a water-immiscible liquid, one or more polymers, one or more ethoxylated amine compounds and optionally, one or more organic or inorganic salts. The emulsions are particularly suitable for use in harsh brine conditions.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 26, 2021
    Assignee: Kemira OYJ
    Inventors: Paul Waterman, Logan Jackson, Danny Nguyen, Ronald Robinson
  • Publication number: 20200347285
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: April 17, 2020
    Publication date: November 5, 2020
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Fraces Fournier, Hong Yang, Sukhjit Aujila
  • Patent number: 10822539
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 3, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20200165778
    Abstract: Provided herein are liquid polymer (LP) compositions comprising an acrylamide (co)polymer, as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of acrylamide (co)polymer of from about 50 to about 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in dewatering, clarification, flocculation and/or thickening applications, and the like.
    Type: Application
    Filed: December 7, 2016
    Publication date: May 28, 2020
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik
  • Patent number: 10626320
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 21, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20200115621
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 16, 2020
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Patent number: 10619087
    Abstract: Provided herein are liquid polymer (LP) compositions comprising a synthetic (co)polymer (e.g., an acrylamide (co)polymer), as well as methods for preparing inverted polymer solutions by inverting these LP compositions in an aqueous fluid. The resulting inverted polymer solutions can have a concentration of a synthetic (co)polymer (e.g., an acrylamide (co)polymer) of from 50 to 15,000 ppm, and a filter ratio of 1.5 or less at 15 psi using a 1.2 ?m filter. Also provided are methods of using these inverted polymer solutions in oil and gas operations, including enhanced oil recovery.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 14, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Do Hoon Kim, Dennis Arun Alexis, Varadarajan Dwarakanath, David Espinosa, Taimur Malik, Logan Jackson, Tom Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla
  • Publication number: 20200087859
    Abstract: A strength additive system for manufacturing paper, board, tissue or the like includes preferably as separate components, a cationic strength agent, such as a cationic polymer with aldehyde functional groups, and an anionic copolymer obtained by polymerization of a reaction mixture including (meth)acrylamide and anionic monomers, the standard viscosity of the obtained copolymer being in a range of 1.5-5.0 mPas. A method for manufacturing of a paper, board, tissue or the like is further disclosed.
    Type: Application
    Filed: June 15, 2018
    Publication date: March 19, 2020
    Inventors: Logan JACKSON, Chen LU, Jenna RABIDEAU
  • Publication number: 20190241794
    Abstract: Liquid polymer compositions comprising: one or more hydrophobic liquids having a boiling point at least about 100° C.; at least about 39% by weight of one or more acrylamide-(co)polymers; one or more emulsifier surfactants; and one or more inverting surfactants; wherein, when the composition is inverted in an aqueous solution, it provides an inverted solution having a filter ratio using a 1.2 micron filter (FR1.2) of about 1.5 or less.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis
  • Publication number: 20190241793
    Abstract: An inverse emulsion composition comprising: one or more hydrophobic liquids having a boiling point at least about 100° C.; up to about 38% by weight of one or more acrylamide-(co)polymers; one or more emulsifier surfactants; and one or more inverting surfactants; wherein, when the composition is inverted in an aqueous solution, it provides an inverted solution having a filter ratio using a 1.2 micron filter (FR1.2) of about 1.5 or less.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis
  • Publication number: 20190203104
    Abstract: Liquid polymer compositions comprising: one or more hydrophobic liquids having a boiling point at least about 100° C.; at least about 39% by weight of one or more acrylamide-(co)polymers; one or more emulsifier surfactants; and one or more inverting surfactants; wherein, when the composition is inverted in an aqueous solution, it provides an inverted solution having a filter ratio using a 1.2 micron filter (FR1.2) of about 1.5 or less.
    Type: Application
    Filed: December 7, 2016
    Publication date: July 4, 2019
    Inventors: Logan Jackson, Thomas J. Lynch, Ronald Robinson, Frances Fournier, Hong Yang, Sukhjit Aujla, Do Hoon Kim, Dennis Arun Alexis