Patents by Inventor Lorenzo C. DeCaul

Lorenzo C. DeCaul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9464166
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: October 11, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20160280616
    Abstract: In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
    Type: Application
    Filed: December 21, 2015
    Publication date: September 29, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Neeraj Sangar, Lorenzo C. DeCaul, Ali A. Kheir
  • Publication number: 20160237022
    Abstract: Provided are compounds of the following: wherein R1 is a saturated or unsaturated cyclic hydrocarbon optionally substituted with an alkyl and/or an OXO-ester, and R2 is a C4 to C14 hydrocarbyl, preferably the residue of a C4 to C14 OXO-alcohol. Also provided are processes for making the compounds and plasticized polymer compositions containing said compounds.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Christine A. Costello, Edmund J. Mozeleski, Pierre Osterrieth, Stephen Zushma, Allen D. Godwin, Diana Smirnova, Catherine A. Faler, Victor DeFlorio, Didier A. Naert
  • Publication number: 20160176785
    Abstract: A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X? dialkylbiphenyl isomer (where X? is 2?, 3? and/or 4?), into at least one different isomer, 3,3?, 3,4? and/or 4,4? dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 23, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Emiel de Smit, Neeraj Sangar, Scott J. Weigel, Sumathy Raman, Terry E. Helton, Lorenzo C. DeCaul, Christine N. Ella, Chuansheng Bai, Ranjita Ghose
  • Patent number: 9328053
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound, wherein each of m and n is independently an integer from 1 to 3 and wherein the dehydrogenation catalyst comprises (i) an element or compound thereof from Group 10 of the Periodic Table of Elements and (ii) tin or a compound thereof.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jihad M. Dakka, Lorenzo C. DeCaul
  • Publication number: 20160115095
    Abstract: In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 28, 2016
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Gregory J. De Martin, Michael Salciccioli, Neeraj Sangar, Aaron B. Pavlish, Ali A. Kheir, Gary D. Mohr
  • Patent number: 9321898
    Abstract: Provided are compounds of the following: wherein R1 is a saturated or unsaturated cyclic hydrocarbon optionally substituted with an alkyl and/or an OXO-ester, and R2 is a C4 to C14 hydrocarbyl, preferably the residue of a C4 to C14 OXO-alcohol. Also provided are processes for making the compounds and plasticized polymer compositions containing said compounds.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Christine A. Costello, Edmund J. Mozeleski, Pierre Osterrieth, Stephen Zushma, Allen D. Godwin, Diana Smirnova, Catherine A. Faler, Victor Deflorio, Didier Naert
  • Publication number: 20160090332
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Application
    Filed: August 18, 2015
    Publication date: March 31, 2016
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Patent number: 9249077
    Abstract: In a process for the dehydrogenation of at least one dehydrogenatable hydrocarbon, at least one dehydrogenatable hydrocarbon selected from an oxygen-containing six-membered carbon ring compound is supplied to a first dehydrogenation reaction zone together with at least one stabilizing compound selected from a non-oxygen-containing six membered carbon ring compound to the first dehydrogenation reaction zone, such that the weight ratio of the stabilizing compound to the dehydrogenatable hydrocarbon supplied to the first dehydrogenation reaction zone is in the range of from 1:200 to 200:1. The dehydrogenation feed stream and the at least one stabilizing compound are contacted with a first dehydrogenation catalyst in the first dehydrogenation reaction zone under dehydrogenation conditions to convert at least a portion of the dehydrogenatable hydrocarbon into an unsaturated six-membered carbon ring compound and hydrogen.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: February 2, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul
  • Patent number: 9242227
    Abstract: A catalyst composition comprises (i) a support; (ii) a dehydrogenation component comprising at least one metal or compound thereof selected from Groups 6 to 10 of the Periodic Table of Elements; and (iii) potassium or a potassium compound present in an amount of about 0.15 to about 0.6 wt % of potassium based upon the total weight of the catalyst composition, wherein the catalyst composition has an oxygen chemisorption of greater than 50%.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: January 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. Decaul, Terry E. Helton, Teng Xu, Jenna L. Wallace
  • Patent number: 9085669
    Abstract: Provided are compounds of the following: wherein R1 is a saturated or unsaturated cyclic hydrocarbon optionally substituted with an alkyl and/or an OXO-ester, and R2 is a C4 to C14 hydrocarbyl, preferably the residue of a C4 to C14 OXO-alcohol. Also provided are processes for making the compounds and plasticized polymer compositions containing said compounds.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: July 21, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Christine A. Costello, Edmund J. Mozeleski, Pierre Osterrieth, Stephen Zushma, Allen D. Goodwin, Diana Smirnova, Catherine A. Faler, Victor Deflorio, Didier Naert
  • Patent number: 9061270
    Abstract: A catalyst composition comprising: (i) a support; (ii) a first component comprising at least one metal component selected from Group 1 and Group 2 of the Periodic Table of Elements; and (iii) a second component comprising at least one metal component selected from Groups 6 to 10 of the Periodic Table of Elements, wherein the catalyst composition exhibits an oxygen chemisorption of greater than 50%.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 23, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Terry E. Helton, Jihad M. Dakka, Tan-Jen Chen, Sabato Miseo, Lorenzo C. Decaul, Edward A. Lemon, Jr.
  • Publication number: 20150140350
    Abstract: Provided are compounds of the following: wherein R1 is a saturated or unsaturated cyclic hydrocarbon optionally substituted with an alkyl and/or an OXO-ester, and R2 is a C4 to C14 hydrocarbyl, preferably the residue of a C4 to C14 OXO-alcohol. Also provided are processes for making the compounds and plasticized polymer compositions containing said compounds.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 21, 2015
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Christine A. Costello, Edmund J. Mozeleski, Pierre Osterrieth, Stephen Zushma, Allen D. Godwin, Diana Smirnova, Catherine A. Faler, Victor Deflorio, Didier Naert
  • Patent number: 9024078
    Abstract: A dehydrogenation process for the dehydrogenation of at least one dehydrogenatable hydrocarbon, the process comprising contacting a feed comprising the at least one dehydrogenatable hydrocarbon under dehydrogenation conditions with a catalyst composition comprising a support and at least one dehydrogenation component wherein said conditions include a temperature of from 400° C. to 750° C. and a pressure of at least 50 psig (345 kPag).
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 5, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. Decaul, Sabato Miseo, James R. Lattner, Tan-Jen Chen, Terry E. Helton, Teng Xu
  • Publication number: 20150080546
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20150080545
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20140378697
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel
  • Publication number: 20140316155
    Abstract: In a process for producing methyl-substituted biphenyl compounds, a feed comprising at least one aromatic hydrocarbon selected from the group consisting of toluene, xylene and mixtures thereof is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes and/or (dimethylcyclohexyl)xylenes together with dialkylated C21+ compounds. At least part of the dialkylated C21+ compounds is then removed from the hydroalkylation reaction product to produce a dehydrogenation feed; and at least part of the dehydrogenation feed is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of methyl-substituted biphenyl compounds.
    Type: Application
    Filed: March 7, 2014
    Publication date: October 23, 2014
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Victor DeFlorio
  • Patent number: 8859835
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Publication number: 20140275605
    Abstract: A composition is described comprising a mixture of (methylcyclohexyl)toluene isomers having the following formula: wherein the mixture comprises at least 50 wt % in total of the 3,3, 3,4 4,3 and 4,4-isomers of (methylcyclohexyl)toluene.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Wei Tang