Patents by Inventor Lothar Karrer

Lothar Karrer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11208375
    Abstract: Process for making solid methylglycine diacetate (MGDA) alkali metal salt (a), said process comprising the steps of (A) providing a 35 to 60% by weight aqueous solution of said MGDA salt having a temperature in the range of from 50 to 90° C., (B) adding 0.01 to 2% by weight of a particulate solid with a pore volume in the range of from 0.25 to 0.75 cm3/g, determined by nitrogen adsorption in accordance with 66134:1998-02 (b), the percentage referring to the content of (a), (C) crystallizing (a), (D) removing said crystalline (a) from the mother liquor.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 28, 2021
    Assignee: BASF SE
    Inventors: Somnath Shivaji Kadam, Frank Jaekel, Feelly Ruether, Lothar Karrer
  • Patent number: 10940427
    Abstract: Disclosed is a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) is applied which is obtained by hydrogenation of a stream (S1) comprising at least one alkane and least one olefin. The stream (S2) comprises one alkane and a reduced amount of at least one olefin compared to the amount in the stream (S1). Then the stream (S2) is converted from the liquid into the gaseous phase and the adsorber is regenerated by contact with the gaseous stream (S2).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: March 9, 2021
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Heinz Ruetter, Patrik Pietz, Sven Crone, Markus Eggersmann, Kam Wing Wong
  • Patent number: 10894921
    Abstract: Disclosed is a process for the regeneration of an adsorber (A1). The adsorber (A1) is regenerated by contact with a gaseous stream (S2) and the outflow of the adsorber (A1) comprising condensate of stream (S2) and organic composition (OC1) collected in a device. After regeneration of the adsorber (A1) the stream (S2) in the adsorber (A1) is replaced completely or at least partially by the content of the device. Then the adsorber (A1) is fed with organic composition comprising at least one olefin, at least one alkane and at least one compound containing oxygen and/or sulfur.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: January 19, 2021
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Patent number: 10807018
    Abstract: Disclosed is a process for the purification of an organic composition (OC1) by adsorption using an assembly containing at least two adsorbers. The organic composition (OC1) comprising at least one alkane, at least one olefin and at least one compound containing oxygen and/or sulphur is fed into a first adsorber (A1) of the assembly in order to obtain an organic composition (OC2) comprising at least one alkane, at least one olefin and a reduced amount of at least one compound containing oxygen and/or sulphur compared to the respective amount in organic composition (OC1). Hydrogenation of the organic composition (OC2) provides a stream (S2) comprising at least one alkane and a reduced amount of at least one olefin compared to the respective amount in organic composition (OC2) obtained after feeding into the first adsorber (A1). A second adsorber (A2) of the assembly is regenerated by contact with stream (S2).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: October 20, 2020
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Markus Eggersmann, Sven Crone, Kam Wing Wong, Heinz Ruetter, Patrik Pietz
  • Publication number: 20200095189
    Abstract: Process for making solid methylglycine diacetate (MGDA) alkali metal salt (a), said process comprising the steps of (A) providing a 35 to 60% by weight aqueous solution of said MGDA salt having a temperature in the range of from 50 to 90° C., (B) adding 0.01 to 2% by weight of a particulate solid with a pore volume in the range of from 0.25 to 0.75 cm3/g, determined by nitrogen adsorption in accordance with 66134:1998-02 (b), the percentage referring to the content of (a), (C) crystallizing (a), (D) removing said crystalline (a) from the mother liquor.
    Type: Application
    Filed: February 20, 2018
    Publication date: March 26, 2020
    Applicant: BASF SE
    Inventors: Somnath Shivaji KADAM, Frank JAEKAL, Feelly RUETHER, Lothar KARRER
  • Patent number: 10550047
    Abstract: A process for the production of oligomerized olefins comprising the following steps: purification of an organic composition (OC1) in at least one adsorber to obtain an organic composition (OC2); oligomerization of organic composition (OC2) in the presence of a catalyst to obtain an organic composition (OC3); distillation of organic composition (OC3) in a distillation column (D1) to obtain an organic composition (OC4) from the upper part of (D1) and an organic composition (OC5) from the lower part of (D1); hydrogenation of organic composition (OC4) to obtain an organic composition (OC11) and regeneration of an adsorber (A1) employing organic composition (OC11) as regeneration media.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: February 4, 2020
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Patent number: 10137400
    Abstract: The invention relates to a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) comprising at least one alkane is converted from liquid phase into gaseous phase. Then the adsorber is regenerated and heated by contact with gaseous stream (S2) up to 230 to 270° C. Subsequently, the adsorber is cooled first by contact with gaseous stream (S2) to a temperature of 90 to 150° C. followed by cooling with liquid stream (S2) to a temperature below 80° C. The outflow of the adsorber (S2*) during the cooling with gaseous stream (S2) and optionally the outflow of the adsorber (S2*) during cooling with liquid stream (S2) is recycled in at least one of these steps.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: November 27, 2018
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Heinz Ruetter, Patrik Pietz, Sven Crone, Markus Eggersmann, Kam Wing Wong
  • Patent number: 9943828
    Abstract: The invention relates to a process for regeneration of an adsorber (A) by contact with a stream (S1), wherein the stream (S1) is heated in advance by at least two heat exchange units (HEU1) and (HEU2). As outflow of the adsorber (A) a stream (S2) is obtained, which is passed through at least two heat exchange units (HEU1) and (HEU2) traversed by stream (S1), wherein the temperature of stream (S2) fed into each heat exchange unit is higher than the temperature of stream (S1) fed into the heat exchange units (HEU1) and (HEU2), in order to directly transfer heat from stream (S2) to stream (S1).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: April 17, 2018
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Guenther Kirchner, Gabriele Zimmer, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Patent number: 9931613
    Abstract: The invention relates to a process for the regeneration of a copper-, zinc- and zirconium oxide-comprising adsorption composition after use thereof for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin, in which the adsorption composition is heated to a temperature in the range from 160 to 400° C. and a regeneration gas is passed through the adsorption composition, wherein the regeneration gas comprises 1000 to 3000 ppm of oxygen in an inert carrier gas.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 3, 2018
    Assignee: BASF SE
    Inventors: Guido Henze, Lothar Karrer, Heiko Urtel, Stephan Hatscher
  • Publication number: 20170333828
    Abstract: The invention relates to a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) comprising at least one alkane is converted from liquid phase into gaseous phase. Then the adsorber is regenerated and heated by contact with gaseous stream (S2) up to 230 to 270° C. Subsequently, the adsorber is cooled first by contact with gaseous stream (S2) to a temperature of 90 to 150° C. followed by cooling with liquid stream (S2) to a temperature below 80° C. The outflow of the adsorber (S2*) during the cooling with gaseous stream (S2) and optionally the outflow of the adsorber (S2*) during cooling with liquid stream (S2) is recycled in at least one of these steps.
    Type: Application
    Filed: October 9, 2014
    Publication date: November 23, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Heinz RUETTER, Patrik PIETZ, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG
  • Publication number: 20170259188
    Abstract: Disclosed is a process for the purification of an organic composition (OC1) by adsorption using an assembly containing at least two adsorbers. The organic composition (OC1) comprising at least one alkane, at least one olefin and at least one compound containing oxygen and/or sulphur is fed into a first adsorber (A1) of the assembly in order to obtain an organic composition (OC2) comprising at least one alkane, at least one olefin and a reduced amount of at least one compound containing oxygen and/or sulphur compared to the respective amount in organic composition (OC1). Hydrogenation of the organic composition (OC2) provides a stream (S2) comprising at least one alkane and a reduced amount of at least one olefin compared to the respective amount in organic composition (OC2) obtained after feeding into the first adsorber (A1). A second adsorber (A2) of the assembly is regenerated by contact with stream (S2).
    Type: Application
    Filed: October 9, 2014
    Publication date: September 14, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Markus EGGERSMANN, Sven CRONE, Kam Wing WONG, Heinz RUETTER, Patrik PIETZ
  • Publication number: 20170252723
    Abstract: The invention relates to a process for regeneration of an adsorber (A) by contact with a stream (S1), wherein the stream (S1) is heated in advance by at least two heat exchange units (HEU1) and (HEU2). As outflow of the adsorber (A) a stream (S2) is obtained, which is passed through at least two heat exchange units (HEU1) and (HEU2) traversed by stream (S1), wherein the temperature of stream (S2) fed into each heat exchange unit is higher than the temperature of stream (S1) fed into the heat exchange units (HEU1) and (HEU2), in order to directly transfer heat from stream (S2) to stream (S1).
    Type: Application
    Filed: October 9, 2014
    Publication date: September 7, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Guenther KIRCHNER, Gabriele ZIMMER, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170247621
    Abstract: Disclosed is a process for the regeneration of an adsorber (A1). The adsorber (A1) is regenerated by contact with a gaseous stream (S2) and the outflow of the adsorber (A1) comprising condensate of stream (S2) and organic composition (OC1) collected in a device. After regeneration of the adsorber (A1) the stream (S2) in the adsorber (A1) is replaced completely or at least partially by the content of the device. Then the adsorber (A1) is fed with organic composition comprising at least one olefin, at least one alkane and at least one compound containing oxygen and/or sulfur.
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170247298
    Abstract: A process for the production of oligomerized olefins comprising the following steps: purification of an organic composition (OC1) in at least one adsorber to obtain an organic composition (OC2); oligomerization of organic composition (OC2) in the presence of a catalyst to obtain an organic composition (OC3); distillation of organic composition (OC3) in a distillation column (D1) to obtain an organic composition (OC4) from the upper part of (D1) and an organic composition (OC5) from the lower part of (D1); hydrogenation of organic composition (OC4) to obtain an organic composition (OC1 1) and regeneration of an adsorber (A1) employing organic composition (OC11) as regeneration media.
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170246585
    Abstract: Disclosed is a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) is applied which is obtained by hydrogenation of a stream (S1) comprising at least one alkane and least one olefin. The stream (S2) comprises one alkane and a reduced amount of at least one olefin compared to the amount in the stream (S1). Then the stream (S2) is converted from the liquid into the gaseous phase and the adsorber is regenerated by contact with the gaseous stream (S2).
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Heinz RUETTER, Patrik PIETZ, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG
  • Publication number: 20160164144
    Abstract: Method for producing a dehydrated liquid mixture comprising water in an amount of less than 20 ppm, for use as a solvent for a conducting salt, comprising or consisting of the following steps: —providing or preparing a liquid starting mixture comprising—a total amount of 90% by weight or more, based on the total amount of the liquid starting mixture, of compounds selected from the group of organic carbonates, acetic acid esters of C1 to C8 alcohols and butyric acid esters of C1 to C8 alcohols, wherein the total amount of acetic acid esters of C1 to C8 alcohols and butyric acid esters of C1 to C8 alcohols is in the range of from 0 to 45% by weight, based on the total amount of the liquid starting mixture, —water in a total amount of 3500 ppm to 20 ppm, based on the total amount of the liquid starting mixture, —optionally further constituents, —contacting the liquid starting mixture with an amount of a binderless zeolite molecular sieve such that the water content in the mixture is reduced to an amount of less
    Type: Application
    Filed: July 10, 2014
    Publication date: June 9, 2016
    Applicant: BASF SE
    Inventors: Agnes VOITL, Itamar Michael MALKOWSKY, Axel KIRSTE, Lothar KARRER
  • Patent number: 9199220
    Abstract: A process for the activation of a copper, zinc and zirconium oxide-comprising adsorption composition for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin wherein: (i) in a first activation step an activation gas mixture comprising the olefin and an inert gas is passed through the adsorption composition; and (ii) in a second activation step the adsorption composition is heated to a temperature in the range from 180 to 300° C. and an inert gas is passed through it, wherein the steps (i) and (ii) can each be performed several times.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 1, 2015
    Assignee: BASF SE
    Inventors: Guido Henze, Lothar Karrer, David J. Artrip, Heiko Urtel, Stephan Hatscher
  • Publication number: 20140155255
    Abstract: The invention relates to a process for the regeneration of a copper-, zinc- and zirconium oxide-comprising adsorption composition after use thereof for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin, in which the adsorption composition is heated to a temperature in the range from 160 to 400° C. and a regeneration gas is passed through the adsorption composition, wherein the regeneration gas comprises 1000 to 3000 ppm of oxygen in an inert carrier gas.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 5, 2014
    Applicant: BASF SE
    Inventors: Guido Henze, Lothar Karrer, Heiko Urtel, Stephan Hatscher
  • Publication number: 20140117281
    Abstract: A process for the activation of a copper, zinc and zirconium oxide-comprising adsorption composition for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin wherein: (i) in a first activation step an activation gas mixture comprising the olefin and an inert gas is passed through the adsorption composition; and (ii) in a second activation step the adsorption composition is heated to a temperature in the range from 180 to 300° C. and an inert gas is passed through it, wherein the steps (i) and (ii) can each be performed several times.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 1, 2014
    Applicant: BASF SE
    Inventors: Guido Henze, Lothar Karrer, David J. Artrip, Heiko Urtel, Stephan Hatscher
  • Patent number: 8637723
    Abstract: The invention relates to a process for the activation of a copper, zinc and zirconium oxide-comprising adsorption composition for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin wherein (i) in a first activation step an activation gas mixture comprising the olefin and an inert gas is passed through the adsorption composition, and (ii) in a second activation step the adsorption composition is heated to a temperature in the range from 180 to 300° C. and an inert gas is passed through it, wherein the steps (i) and (ii) can each be performed several times.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 28, 2014
    Inventors: Guido Henze, Lothar Karrer, David J. Artrip, Heiko Urtel, Stephan Hatscher