Patents by Inventor Luan C. Tran

Luan C. Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140193961
    Abstract: Embodiments of MIM capacitors may be embedded into a thick IMD layer with enough thickness (e.g., 10 K?˜30 K?) to get high capacitance, which may be on top of a thinner IMD layer. MIM capacitors may be formed among three adjacent metal layers which have two thick IMD layers separating the three adjacent metal layers. Materials such as TaN or TiN are used as bottom/top electrodes & Cu barrier. The metal layer above the thick IMD layer may act as the top electrode connection. The metal layer under the thick IMD layer may act as the bottom electrode connection. The capacitor may be of different shapes such as cylindrical shape, or a concave shape. Many kinds of materials (Si3N4, ZrO2, HfO2, BST . . . etc.) can be used as the dielectric material. The MIM capacitors are formed by one or two extra masks while forming other non-capacitor logic of the circuit.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Chyuan Tzeng, Luan C. Tran, Chen-Jong Wang, Kuo-Chi Tu, Hsiang-Fan Lee
  • Patent number: 8723326
    Abstract: Methods of fabricating semiconductor structures incorporating tight pitch contacts aligned with active area features and of simultaneously fabricating self-aligned tight pitch contacts and conductive lines using various techniques for defining patterns having sublithographic dimensions. Semiconductor structures having tight pitch contacts aligned with active area features and, optionally, aligned conductive lines are also disclosed, as are semiconductor structures with tight pitch contact holes and aligned trenches for conductive lines.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 13, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8716100
    Abstract: Embodiments of MIM capacitors may be embedded into a thick IMD layer with enough thickness (e.g., 10 K?˜30 K?) to get high capacitance, which may be on top of a thinner IMD layer. MIM capacitors may be formed among three adjacent metal layers which have two thick IMD layers separating the three adjacent metal layers. Materials such as TaN or TiN are used as bottom/top electrodes & Cu barrier. The metal layer above the thick IMD layer may act as the top electrode connection. The metal layer under the thick IMD layer may act as the bottom electrode connection. The capacitor may be of different shapes such as cylindrical shape, or a concave shape. Many kinds of materials (Si3N4, ZrO2, HfO2, BST . . . etc) can be used as the dielectric material. The MIM capacitors are formed by one or two extra masks while forming other non-capacitor logic of the circuit.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chyuan Tzeng, Luan C. Tran, Chen-Jong Wang, Kuo-Chi Tu, Hsiang-Fan Lee
  • Publication number: 20140045125
    Abstract: Spacers are formed by pitch multiplication and a layer of negative photoresist is deposited on and over the spacers to form additional mask features. The deposited negative photoresist layer is patterned, thereby removing photoresist from between the spacers in some areas. During patterning, it is not necessary to direct light to the areas where negative photoresist removal is desired, and the clean removal of the negative photoresist from between the spacers is facilitated. The pattern defined by the spacers and the patterned negative photoresist is transferred to one or more underlying masking layers before being transferred to a substrate.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Luan C. Tran
  • Patent number: 8609324
    Abstract: Methods of forming electrically conductive and/or semiconductive features for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. The features can have a reduced pitch in one direction and a wider pitch in another direction. Conventional photo-lithography steps can be used in combination with pitch-reduction techniques to form elongate, pitch-reduced features such as bit-line contacts, for example.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20130320552
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao Liu, Eric Freeman, Russell Nielsen
  • Patent number: 8598043
    Abstract: The invention includes methods of forming isolation regions for semiconductor constructions. A hard mask can be formed and patterned over a semiconductor substrate, with the patterned hard mask exposing a region of the substrate. Such exposed region can be etched to form a first opening having a first width. The first opening is narrowed with a conformal layer of carbon-containing material. The conformal layer is punched through to expose substrate along a bottom of the narrowed opening. The exposed substrate is removed to form a second opening which joins to the first opening, and which has a second width less than the first width. The carbon-containing material is then removed from within the first opening, and electrically insulative material is formed within the first and second openings. The electrically insulative material can substantially fill the first opening, and leave a void within the second opening.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: December 3, 2013
    Assignee: Micron Technology Inc.
    Inventors: Ramakanth Alapati, Ardavan Niroomand, Gurtej S. Sandhu, Luan C. Tran
  • Patent number: 8563229
    Abstract: Spacers are formed by pitch multiplication and a layer of negative photoresist is deposited on and over the spacers to form additional mask features. The deposited negative photoresist layer is patterned, thereby removing photoresist from between the spacers in some areas. During patterning, it is not necessary to direct light to the areas where negative photoresist removal is desired, and the clean removal of the negative photoresist from between the spacers is facilitated. The pattern defined by the spacers and the patterned negative photoresist is transferred to one or more underlying masking layers before being transferred to a substrate.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 22, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8507341
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: August 13, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
  • Patent number: 8481417
    Abstract: Methods of fabricating semiconductor structures incorporating tight pitch contacts aligned with active area features and of simultaneously fabricating self-aligned tight pitch contacts and conductive lines using various techniques for defining patterns having sublithographic dimensions. Semiconductor structures having tight pitch contacts aligned with active area features and, optionally, aligned conductive lines are also disclosed, as are semiconductor structures with tight pitch contact holes and aligned trenches for conductive lines.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20130113061
    Abstract: Provided is a semiconductor image sensor device. The image sensor device includes a substrate. The image sensor device includes a first pixel and a second pixel disposed in the substrate. The first and second pixels are neighboring pixels. The image sensor device includes an isolation structure disposed in the substrate and between the first and second pixels. The image sensor device includes a doped isolation device disposed in the substrate and between the first and second pixels. The doped isolation device surrounds the isolation structure in a conformal manner.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Lai, Yeur-Luen Tu, Chih-Hui Huang, Cheng-Ta Wu, Chia-Shiung Tsai, Luan C. Tran
  • Patent number: 8431971
    Abstract: Crisscrossing spacers formed by pitch multiplication are used to form isolated features, such as contacts vias. A first plurality of mandrels are formed on a first level and a first plurality of spacers are formed around each of the mandrels. A second plurality of mandrels is formed on a second level above the first level. The second plurality of mandrels is formed so that they cross the first plurality of mandrels, when viewed in a top down view. A second plurality of spacers is formed around each of the second plurality of mandrels. The first and the second mandrels are selectively removed to leave a pattern of voids defined by the crisscrossing first and second pluralities of spacers. These spacers can be used as a mask to transfer the pattern of voids to a substrate. The voids can be filled with conductive material to form conductive contacts.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: April 30, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8426118
    Abstract: Methods of forming electrically conductive and/or semiconductive features for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. The features can have a reduced pitch in one direction and a wider pitch in another direction. Conventional photo-lithography steps can be used in combination with pitch-reduction techniques to form elongate, pitch-reduced features such as bit-line contacts, for example.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 23, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8390034
    Abstract: Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: March 5, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20130043560
    Abstract: Embodiments of MIM capacitors may be embedded into a thick IMD layer with enough thickness (e.g., 10 K?˜30 K?) to get high capacitance, which may be on top of a thinner IMD layer. MIM capacitors may be formed among three adjacent metal layers which have two thick IMD layers separating the three adjacent metal layers. Materials such as TaN or TiN are used as bottom/top electrodes & Cu barrier. The metal layer above the thick IMD layer may act as the top electrode connection. The metal layer under the thick IMD layer may act as the bottom electrode connection. The capacitor may be of different shapes such as cylindrical shape, or a concave shape. Many kinds of materials (Si3N4, ZrO2, HfO2, BST . . . etc) can be used as the dielectric material. The MIM capacitors are formed by one or two extra masks while forming other non-capacitor logic of the circuit.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chyuan Tzeng, Luan C. Tran, Chen-Jong Wang, Kuo-Chi Tu, Hsiang-Fan Lee
  • Patent number: 8243527
    Abstract: A non-volatile memory device includes a first metal-oxide-semiconductor (CMOS) device coupled to a bit line and a word line and a second CMOS device coupled to the first CMOS device. The second CMOS device is also coupled to a complementary bit line and a complementary word line. The first and second CMOS devices are complementary to one another. An output node is coupled between the first CMOS device and the second CMOS device. A method of programming a non-volatile field programmable gate array (NV-FPGA) includes coupling an information handling system to the FPGA, performing a block erase of a plurality of memory cells in the FPGA, verifying that the block erase is successful, programming an upper page of the FPGA, verifying that the upper page programming is successful, programming a lower page of the FPGA and verifying that the lower page programming is successful.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: August 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Hung, Chia-Ta Hsieh, Luan C. Tran
  • Publication number: 20120193777
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Luan C. Tran, John Lee, Zengtao "Tony" Liu, Eric Freeman, Russell Nielsen
  • Patent number: 8158476
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
  • Publication number: 20120061807
    Abstract: Crisscrossing spacers formed by pitch multiplication are used to form isolated features, such as contacts vias. A first plurality of mandrels are formed on a first level and a first plurality of spacers are formed around each of the mandrels. A second plurality of mandrels is formed on a second level above the first level. The second plurality of mandrels is formed so that they cross the first plurality of mandrels, when viewed in a top down view. A second plurality of spacers is formed around each of the second plurality of mandrels. The first and the second mandrels are selectively removed to leave a pattern of voids defined by the crisscrossing first and second pluralities of spacers. These spacers can be used as a mask to transfer the pattern of voids to a substrate. The voids can be filled with conductive material to form conductive contacts.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 15, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20120025869
    Abstract: A non-volatile memory device includes a first metal-oxide-semiconductor (CMOS) device coupled to a bit line and a word line and a second CMOS device coupled to the first CMOS device. The second CMOS device is also coupled to a complementary bit line and a complementary word line. The first and second CMOS devices are complementary to one another. An output node is coupled between the first CMOS device and the second CMOS device. A method of programming a non-volatile field programmable gate array (NV-FPGA) includes coupling an information handling system to the FPGA, performing a block erase of a plurality of memory cells in the FPGA, verifying that the block erase is successful, programming an upper page of the FPGA, verifying that the upper page programming is successful, programming a lower page of the FPGA and verifying that the lower page programming is successful.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Wei Hung, Chia-Ta Hsieh, Luan C. Tran