Patents by Inventor Luca Coronato

Luca Coronato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170168087
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have different frequencies. An error is identified based on a portion of a signal that is received from the accelerometer and that is responsive to the auxiliary drive signal. Compensation is performed at the accelerometer based on the identified error.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20170168086
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have difference frequencies. A portion of a sensed signal at the sense drive frequency is used to determine linear acceleration while a portion of the sensed signal at the auxiliary drive frequency is used to identify damage within a sense path from the proof mass.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20170168084
    Abstract: A sensor such as an accelerometer includes a proof mass located opposite a plurality of electrodes located on a substrate. Some of the electrodes are auxiliary electrodes that apply an alternating current auxiliary signal to the proof mass while other electrodes are sense electrodes that sense movement of the proof mass. When a residual voltage is not present on the proof mass or on the sense electrodes, the forces imparted by the auxiliary signal onto the proof mass are substantially balanced. When the residual voltage is present on the proof masses, forces at a first harmonic frequency of the auxiliary signal are sensed by a sense electrode of the sensor. A self-test is failed if the sensed forces exceed a threshold.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani
  • Publication number: 20170167945
    Abstract: A microelectromechanical sensor (MEMS) package includes a gyroscope and an accelerometer. The gyroscope is located within a low-pressure cavity that is sealed from an external pressure. The accelerometer is located within a cavity, and the seal for the accelerometer cavity is entirely within the gyroscope cavity. Under normal operating conditions, the accelerometer seal holds the accelerometer cavity at a higher pressure than the pressure of the enclosing gyroscope cavity. In the event that one of the gyroscope seal or the accelerometer seal is broken, the gyroscope senses the change in pressure and a failure is identified.
    Type: Application
    Filed: September 7, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Luca Coronato, Giacomo Gafforelli, Adolfo Giambastiani
  • Publication number: 20170167873
    Abstract: A gyroscope is driven at a drive frequency and senses a Coriolis force caused by rotation of the gyroscope. The response of the gyroscope to a given Coriolis force may change due to changes in the gyroscope over time. A plurality of test frequencies are applied to the gyroscope, and the response of the gyroscope to those test frequencies is analyzed in order to track changes in the response of the gyroscope. Operational parameters of the gyroscope may be altered in order to compensate for those changes.
    Type: Application
    Filed: August 1, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Luca Coronato, Giacomo Gafforelli, Jaakko Ruohio
  • Publication number: 20170168085
    Abstract: A microelectromechanical (MEMS) sensor, such as an accelerometer, has one more proof masses that respond to movement of the sensor, the movement of which is measured based on a distance between the one or more proof masses and on one or more sense electrodes. The accelerometer also has a plurality of auxiliary electrodes and a signal generator configured to apply an auxiliary signal having a first harmonic frequency to the plurality of auxiliary electrodes. Circuitry receives a sensed signal from the plurality of sense electrodes and identifies a portion of the sensed signal having the first harmonic frequency. Based on this identified portion of the sensed signal, the circuitry determines whether a residual voltage is present on the one or more proof masses or on the one or more sense electrodes, and the circuitry modifies the operation of the accelerometer when the residual voltage is determined to be present in order to compensate for the residual voltage.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani
  • Publication number: 20170167946
    Abstract: A microelectromechanical sensor (MEMS) package includes a gyroscope and an accelerometer. The gyroscope is located within a low-pressure cavity that is sealed from an external pressure. The accelerometer is located within a cavity, and the seal for the accelerometer cavity is entirely within the gyroscope cavity. Under normal operating conditions, the accelerometer seal holds the accelerometer cavity at a higher pressure than the pressure of the enclosing gyroscope cavity. In the event that one of the gyroscope seal or the accelerometer seal is broken, the gyroscope senses the change in pressure.
    Type: Application
    Filed: September 7, 2016
    Publication date: June 15, 2017
    Applicant: InvenSense, Inc.
    Inventors: Luca Coronato, Giacomo Gafforelli, Adolfo Giambastiani
  • Publication number: 20170168088
    Abstract: An accelerometer has a plurality of proof masses and a plurality of sense electrodes, which collectively form at least two capacitors. A first sense drive signal is applied to a first capacitor and a second sense drive signal is applied to a second capacitor. Both of the sense drive signals have the same sense drive frequency. Capacitance signals are sensed from each of the first capacitor and second capacitor, and a common mode component of the capacitance signals is determined. A capacitor error is identified based on the common mode component.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 15, 2017
    Applicant: InvenSense, Inc.
    Inventors: Luca Coronato, Giacomo Gafforelli, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20170059322
    Abstract: An integrated MEMS structure includes a driving assembly anchored to a substrate and actuated with a driving movement. A pair of sensing masses suspended above the substrate and coupled to the driving assembly via elastic elements is fixed in the driving movement and performs a movement along a first direction of detection, in response to an external stress. A coupling assembly couples the pair of sensing masses mechanically to couple the vibration modes. The coupling assembly is formed by a rigid element, which connects the sensing masses and has a point of constraint in an intermediate position between the sensing masses, and elastic coupling elements for coupling the rigid element to the sensing masses to present a first stiffness to a movement in phase-opposition and a second stiffness, greater than the first, to a movement in phase, of the sensing masses along the direction of detection.
    Type: Application
    Filed: April 27, 2016
    Publication date: March 2, 2017
    Inventors: Luca Coronato, Gabriele Cazzaniga
  • Publication number: 20170023363
    Abstract: An integrated MEMS gyroscope, is provided with: at least a first driving mass driven with a first driving movement along a first axis upon biasing of an assembly of driving electrodes, the first driving movement generating at least one sensing movement, in the presence of rotations of the integrated MEMS gyroscope; and at least a second driving mass driven with a second driving movement along a second axis, transverse to the first axis, the second driving movement generating at least a respective sensing movement, in the presence of rotations of the integrated MEMS gyroscope. The integrated MEMS gyroscope is moreover provided with a first elastic coupling element, which elastically couples the first driving mass and the second driving mass in such a way as to couple the first driving movement to the second driving movement with a given ratio of movement.
    Type: Application
    Filed: December 19, 2014
    Publication date: January 26, 2017
    Inventors: Gabriele Cazzaniga, Luca Coronato
  • Patent number: 9517930
    Abstract: Various embodiments of the invention reduce stiction in a wide range of MEMS devices and increase device reliability without negatively impacting performance. In certain embodiments, stiction recover is accomplished by applying electrostatic forces to electrodes via optimized voltage signals that generate a restoring force that aids in overcoming stiction forces between electrodes. The voltage signals used within a stiction recovery procedure may be static or a dynamic, and may be applied directly to existing electrodes within a MEMS device, thereby, eliminating the need for additional components. In some embodiments, the voltage is estimated or calibrated and swept through a range of frequencies that contains one or more resonant frequencies of the mechanical structure that comprises the parts to be detached.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 13, 2016
    Assignee: Hanking Electronics, Ltd.
    Inventors: Gabriele Cazzaniga, Luca Coronato, Barbara Simoni, Luciano Prandi
  • Patent number: 9470526
    Abstract: An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 18, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Luca Coronato, Gabriele Cazzaniga, Sarah Zerbini
  • Patent number: 9352955
    Abstract: This invention relates generally to semiconductor manufacturing and packaging and more specifically to semiconductor manufacturing in MEMS (Microelectromechanical systems) inertial sensing products. Embodiments of the present invention improve pressure sensor performance (e.g., absolute and relative accuracy) by increasing pressure insensitivity to changes in thermo-mechanical stress. The pressure insensitivity can be achieved by using the array of pressure sensing membranes, suspended sensing electrodes, and dielectric anchors.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: May 31, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Antonio Molfese, Luca Coronato, Gabriele Cazzaniga, Luigi Esposito
  • Patent number: 9340413
    Abstract: A MEMS acoustic transducer, for example, a microphone, includes a substrate provided with a cavity, a supporting structure, fixed to the substrate, a membrane having a perimetral edge and a centroid, suspended above the cavity and fixed to the substrate the membrane configured to oscillate via the supporting structure. The supporting structure includes a plurality of anchorage elements fixed to the membrane, and each anchorage element is coupled to a respective portion of the membrane between the centroid and the perimetral edge of the membrane.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 17, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Angelo Antonio Merassi, Sarah Zerbini, Luca Coronato
  • Patent number: 9278847
    Abstract: An integrated microelectromechanical structure is provided with a driving mass, anchored to a substrate via elastic anchorage elements and designed to be actuated in a plane with a driving movement; and a first sensing mass and a second sensing mass, suspended within, and coupled to, the driving mass via respective elastic supporting elements so as to be fixed with respect thereto in said driving movement and to perform a respective detection movement in response to an angular velocity. In particular, the first and the second sensing masses are connected together via elastic coupling elements, configured to couple their modes of vibration.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 8, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Cazzaniga, Luca Coronato, Giacomo Calcaterra
  • Publication number: 20160033275
    Abstract: The present invention relates to a method for operating a rotation sensor for detecting a plurality of rates of rotation about orthogonal axes (x,y,z). The rotation sensor comprises a substrate, driving masses, X-Y sensor masses, and Z sensor masses. The driving masses are driven by drive elements to oscillate in the X-direction. The X-Y sensor masses are coupled to the driving masses, and driven to oscillate in the X-Y direction radially to a center. When a rate of rotation of the substrate occurs about the X-axis or the Y-axis, the X-Y sensor masses are jointly deflected about the Y-axis or X-axis. When a rate of rotation of the substrate occurs about the Z-axis, the X-Y sensor masses are rotated about the Z-axis, and the Z sensor masses are deflected substantially in the X-direction.
    Type: Application
    Filed: October 5, 2015
    Publication date: February 4, 2016
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Luca Coronato, Gabriele Cazzaniga
  • Patent number: 9207254
    Abstract: The invention relates to a microelectro-mechanical structure (MEMS), and more particularly, to systems, devices and methods of compensating effect of thermo-mechanical stress on a micro-machined accelerometer by incorporating and adjusting elastic elements to couple corresponding sensing electrodes. The sensing electrodes comprise moveable electrodes and stationary electrodes that are respectively coupled on a proof mass and a substrate. At least one elastic element is incorporated into a coupling structure that couples two stationary electrodes or couples a stationary electrode to at least one anchor. More than one elastic element may be incorporated. The number, locations, configurations and geometries of the elastic elements are adjusted to compensate an output offset and a sensitivity drift that are induced by the thermo-mechanical stress accumulated in the MEMS device.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: December 8, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Barbara Simoni, Luca Coronato, Gabriele Cazzaniga
  • Patent number: 9176157
    Abstract: The invention relates to a microelectromechanical structure, and more particularly, to systems, devices and methods of compensating the effect of the thermo-mechanical stress by incorporating and adjusting elastic elements that are used to couple a moveable proof mass to anchors. The proof mass responds to acceleration by displacing and tilting with respect to a moveable mass rotational axis. The thermo-mechanical stress is accumulated in the structure during the courses of manufacturing, packaging and assembly or over the structure's lifetime. The stress causes a displacement on the proof mass. A plurality of elastic elements is coupled to support the proof mass. Geometry and configuration of these elastic elements are adjusted to reduce the displacement caused by the thermo-mechanical stress.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: November 3, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Barbara Simoni, Luca Coronato, Gabriele Cazzaniga
  • Patent number: RE45792
    Abstract: A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to an anchorage arranged along the axis of rotation by elastic anchorage elements. An opening is provided within the driving mass and the sensing mass is arranged within the opening. The elastic supporting and anchorage elements render the sensing mass fixed to the driving mass in the rotary motion, and substantially decoupled from the driving mass in the detection movement. The detection movement is a rotation about an axis lying in a plane. The sensing mass has, in plan view, a non-rectangular shape; in particular, the sensing mass has a radial geometry and, in plan view, the overall shape of a radial annulus sector.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 3, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luca Coronato, Alessandro Balzelli Ludovico, Sarah Zerbini
  • Patent number: RE45855
    Abstract: A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to a first anchorage arranged along the axis of rotation by first elastic anchorage elements. The driving mass is also coupled to a pair of further anchorages positioned externally thereof and coupled to opposite sides with respect to the first anchorage by further elastic anchorage elements; the elastic supporting elements and the first and further elastic anchorage elements render the driving mass fixed to the first sensing mass in the rotary motion, and substantially decoupled from the sensing mass in the detection movement, the detection movement being a rotation about an axis lying in a plane.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: January 19, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luca Coronato, Alessandro Balzelli Ludovico, Sarah Zerbini