Patents by Inventor Ludek Kubes

Ludek Kubes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10079115
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte that contains one or more conductive polymers and overlies the dielectric, and an external coating that overlies the solid electrolyte, is provided. The external coating includes at least one carbonaceous layer and at least one metal layer. In addition to the aforementioned layers, the external coating can also include at least one conductive polymer layer that can be disposed between the carbonaceous and metal layers. Among other things, such a conductive polymer layer can reduce the likelihood that the carbonaceous layer will delaminate from the solid electrolyte during use. Further, the notched geometry of the anode body itself is selected to minimize the risk of delamination of the external coating layers from the anode body. This combination of characteristics can increase the mechanical robustness of the part and improve its electrical performance.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: September 18, 2018
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Ludek Kubes
  • Patent number: 9905368
    Abstract: A solid electrolytic capacitor including a capacitor element, a first anode lead, a second anode lead, and a carrier wire. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The first and second anode leads each have an embedded portion positioned within the anode body and an external portion extending longitudinally from a surface of the anode body in an x-direction, while the carrier wire is positioned external to the anode body. Further, a first portion of the carrier wire is connected to the external portions of the first and second anode leads, while a second portion of the carrier wire extends longitudinally away from the surface of the anode body in the x-direction. Such an arrangement reduces the ESR and leakage current of the capacitor.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: February 27, 2018
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Ludek Kubes, Radek Matousek, Stanislav Zednicek
  • Patent number: 9842704
    Abstract: A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes an anode lead tape having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction, where the width of the anode lead tape is greater than the height of the anode lead tape. Meanwhile, a carrier lead wire is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the anode lead tape.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: December 12, 2017
    Assignee: AVX Corporation
    Inventors: Stanislav Zednicek, Lotfi Djebara, Ludek Kubes, Radek Matousek, Pavel Bosak, Jiri Snitil
  • Patent number: 9837216
    Abstract: A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes a first anode lead having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction. The external portion includes a substantially planar surface. Meanwhile, the second anode lead is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the first anode lead.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 5, 2017
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Radek Matousek, Ludek Kubes
  • Patent number: 9776281
    Abstract: A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body and a relatively large diameter anode lead wire is provided. The lead wire is electrically connected to the anode body for connection to an anode termination. Further, the lead wire has a diameter that is at least about 10% of the height of the porous anode body to improve the points of contact between the anode body and wire to reduce ESR. A portion of the lead wire extends from a surface of the anode body in a longitudinal direction. At least one notch can be formed in the portion of the lead wire that extends from the anode body. The notch can be formed via a laser or by cutting, punching, or sawing and can serve as the point of electrical connection between the anode termination and the lead wire.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: October 3, 2017
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Stanislav Zednicek, Jiri Snitil, Jiri Navratil, Ludek Kubes
  • Patent number: 9620293
    Abstract: A wet electrolytic capacitor is provided that includes an anode, an anode lead, an electrolyte, a casing having a wall that defines an anode lead orifice, and a sealing assembly. The sealing assembly is connected to the casing at the anode lead orifice, and a portion of the anode lead extends through it. The sealing assembly includes an isolation tube, a metal plate, and an elastomeric ring. The tube receives the anode lead and has a first portion extending through the anode lead orifice and a second portion located in an interior of the casing. The plate is positioned adjacent to an exterior surface of the wall, covers the anode lead orifice, and contains an orifice through which the first portion of the tube extends. The ring is positioned adjacent to an interior surface of the wall and contains an orifice through which the second portion of the tube extends.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: April 11, 2017
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Radek Matousek, Ludek Kubes
  • Publication number: 20170040118
    Abstract: A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes an anode lead tape having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction, where the width of the anode lead tape is greater than the height of the anode lead tape. Meanwhile, a carrier lead wire is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the anode lead tape.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 9, 2017
    Inventors: Stanislav Zednicek, Lotfi Djebara, Ludek Kubes, Radek Matousek, Pavel Bosak, Jiri Snitil
  • Publication number: 20170040116
    Abstract: A solid electrolytic capacitor including a capacitor element, a first anode lead, a second anode lead, and a carrier wire. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The first and second anode leads each have an embedded portion positioned within the anode body and an external portion extending longitudinally from a surface of the anode body in an x-direction, while the carrier wire is positioned external to the anode body. Further, a first portion of the carrier wire is connected to the external portions of the first and second anode leads, while a second portion of the carrier wire extends longitudinally away from the surface of the anode body in the x-direction. Such an arrangement reduces the ESR and leakage current of the capacitor.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 9, 2017
    Inventors: Lotfi Djebara, Ludek Kubes, Radek Matousek, Stanislav Zednicek
  • Publication number: 20160181022
    Abstract: A solid electrolytic capacitor including a capacitor element and an anode lead assembly is provided. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The anode lead assembly includes a first anode lead having an embedded portion positioned within the anode body and an external portion extending from a surface of the anode body in a longitudinal direction. The external portion includes a substantially planar surface. Meanwhile, the second anode lead is positioned external to the anode body and includes a first portion and a second portion. The first portion has a substantially planar surface that is connected to the substantially planar surface of the external portion of the first anode lead.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Lotfi Djebara, Radek Matousek, Ludek Kubes
  • Publication number: 20160141110
    Abstract: A wet electrolytic capacitor is provided that includes an anode, an anode lead, an electrolyte, a casing having a wall that defines an anode lead orifice, and a sealing assembly. The sealing assembly is connected to the casing at the anode lead orifice, and a portion of the anode lead extends through it. The sealing assembly includes an isolation tube, a metal plate, and an elastomeric ring. The tube receives the anode lead and has a first portion extending through the anode lead orifice and a second portion located in an interior of the casing. The plate is positioned adjacent to an exterior surface of the wall, covers the anode lead orifice, and contains an orifice through which the first portion of the tube extends. The ring is positioned adjacent to an interior surface of the wall and contains an orifice through which the second portion of the tube extends.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 19, 2016
    Inventors: Lotfi Djebara, Radek Matousek, Ludek Kubes
  • Publication number: 20160093446
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte that contains one or more conductive polymers and overlies the dielectric, and an external coating that overlies the solid electrolyte, is provided. The external coating includes at least one carbonaceous layer and at least one metal layer. In addition to the aforementioned layers, the external coating can also include at least one conductive polymer layer that can be disposed between the carbonaceous and metal layers. Among other things, such a conductive polymer layer can reduce the likelihood that the carbonaceous layer will delaminate from the solid electrolyte during use. Further, the notched geometry of the anode body itself is selected to minimize the risk of delamination of the external coating layers from the anode body. This combination of characteristics can increase the mechanical robustness of the part and improve its electrical performance.
    Type: Application
    Filed: December 9, 2015
    Publication date: March 31, 2016
    Inventors: Lotfi Djebara, Ludek Kubes
  • Patent number: 9240285
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte that contains one or more conductive polymers and overlies the dielectric, and an external coating that overlies the solid electrolyte, is provided. The external coating includes at least one carbonaceous layer and at least one metal layer. In addition to the aforementioned layers, the external coating can also include at least one conductive polymer layer that can be disposed between the carbonaceous and metal layers. Among other things, such a conductive polymer layer can reduce the likelihood that the carbonaceous layer will delaminate from the solid electrolyte during use. Further, the notched geometry of the anode body itself is selected to minimize the risk of delamination of the external coating layers from the anode body. This combination of characteristics can increase the mechanical robustness of the part and improve its electrical performance.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 19, 2016
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Ludek Kubes
  • Publication number: 20140321029
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte that contains one or more conductive polymers and overlies the dielectric, and an external coating that overlies the solid electrolyte, is provided. The external coating includes at least one carbonaceous layer and at least one metal layer. In addition to the aforementioned layers, the external coating can also include at least one conductive polymer layer that can be disposed between the carbonaceous and metal layers. Among other things, such a conductive polymer layer can reduce the likelihood that the carbonaceous layer will delaminate from the solid electrolyte during use. Further, the notched geometry of the anode body itself is selected to minimize the risk of delamination of the external coating layers from the anode body. This combination of characteristics can increase the mechanical robustness of the part and improve its electrical performance.
    Type: Application
    Filed: August 22, 2013
    Publication date: October 30, 2014
    Applicant: AVX Corporation
    Inventors: Lotfi Djebara, Ludek Kubes
  • Patent number: 8842419
    Abstract: A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body and a relatively large width and/or thickness anode lead tape is provided. The tape is electrically connected to the anode body for connection to an anode termination. Further, the tape has a width that is at least about 20% of the width of the anode body to improve the points of contact between the anode body and tape to reduce ESR. A portion of the tape extends from a surface of the anode body in a longitudinal direction. At least one notch can be formed in the portion of the tape that extends from the anode body. The notch can be formed via a laser or by cutting, punching, or sawing and can serve as the point of electrical connection between the anode termination and the lead tape.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: September 23, 2014
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Pavel Bosak, Ludek Kubes
  • Patent number: 8760852
    Abstract: A capacitor containing a solid electrolytic capacitor element having a porous anode body and an anode lead assembly is provided. At least one wire of the lead assembly is electrically connected to the anode body for connection to an anode termination. The lead assembly contains first and second lead wires embedded within the anode body and extending therefrom in a longitudinal direction. The first and second wires are bonded/fused together during sintering of the anode body (i.e., “sinter bonded”). The bond may be metallurgical, covalent, electrostatic, etc. Sinter bonding of the wires reduces the path length and resistance for current flow within the anode body, thus reducing ESR. This is particularly useful for anode bodies formed from powders of a high specific charge, which tend to shrink away from the wires after sintering. The sinter bonded wires also result in a lead assembly that is more robust and mechanically stable.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: June 24, 2014
    Assignee: AVX Corporation
    Inventors: Lotfi Djebara, Ludek Kubes, Pavel Bosak
  • Publication number: 20130321986
    Abstract: A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body and a relatively large width and/or thickness anode lead tape is provided. The tape is electrically connected to the anode body for connection to an anode termination. Further, the tape has a width that is at least about 20% of the width of the anode body to improve the points of contact between the anode body and tape to reduce ESR. A portion of the tape extends from a surface of the anode body in a longitudinal direction. At least one notch can be formed in the portion of the tape that extends from the anode body. The notch can be formed via a laser or by cutting, punching, or sawing and can serve as the point of electrical connection between the anode termination and the lead tape.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: AVX CORPORATION
    Inventors: Lotfi Djebara, Pavel Bosak, Ludek Kubes
  • Publication number: 20130321985
    Abstract: A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body and a relatively large diameter anode lead wire is provided. The lead wire is electrically connected to the anode body for connection to an anode termination. Further, the lead wire has a diameter that is at least about 10% of the height of the porous anode body to improve the points of contact between the anode body and wire to reduce ESR. A portion of the lead wire extends from a surface of the anode body in a longitudinal direction. At least one notch can be formed in the portion of the lead wire that extends from the anode body. The notch can be formed via a laser or by cutting, punching, or sawing and can serve as the point of electrical connection between the anode termination and the lead wire.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: AVX CORPORATION
    Inventors: Lotfi Djebara, Stanislav Zednicek, Jiri Snitil, Jiri Navratil, Ludek Kubes
  • Publication number: 20130279077
    Abstract: A capacitor containing a solid electrolytic capacitor element having a porous anode body and an anode lead assembly is provided. At least one wire of the lead assembly is electrically connected to the anode body for connection to an anode termination. The lead assembly contains first and second lead wires embedded within the anode body and extending therefrom in a longitudinal direction. The first and second wires are bonded/fused together during sintering of the anode body (i.e., “sinter bonded”). The bond may be metallurgical, covalent, electrostatic, etc. Sinter bonding of the wires reduces the path length and resistance for current flow within the anode body, thus reducing ESR. This is particularly useful for anode bodies formed from powders of a high specific charge, which tend to shrink away from the wires after sintering. The sinter bonded wires also result in a lead assembly that is more robust and mechanically stable.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: AVX CORPORATION
    Inventors: Lotfi Djebara, Ludek Kubes, Pavel Bosak