Patents by Inventor Ludovic Ecarnot

Ludovic Ecarnot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145314
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Application
    Filed: January 2, 2024
    Publication date: May 2, 2024
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Publication number: 20240030061
    Abstract: A donor substrate for transferring a single-crystal thin layer made of a first material, onto a receiver substrate. The donor substrate comprises: —a buried weakened plane delimiting an upper portion and a lower portion of the donor substrate, —in the upper portion, a first layer, a second layer adjacent to the buried weakened plane, and a stop layer between the first layer and the second layer the first layer composed of the first material, the stop layer being formed of a second material, —an amorphized sub-portion, made amorphous by ion implantation, having a thickness less than that of the upper portion, and including at least the first layer; the second layer comprising at least one single-crystal sub-layer, adjacent to the buried weakened plane. Two embodiments of a method may be used for transferring a single-crystal thin layer from the donor substrate.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 25, 2024
    Inventors: Larry Vincent, Shay Reboh, Lucie Le Van-Jodin, Frédéric Milesi, Ludovic Ecarnot, Gweltaz Gaudin, Didier Landru
  • Patent number: 11876020
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: January 16, 2024
    Assignee: SOITEC
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Patent number: 11855120
    Abstract: A substrate for a front-side type image sensor includes a supporting semiconductor substrate, an electrically insulating layer, and a silicon-germanium semiconductor layer, known as the active layer. The electrically insulating layer includes a stack of dielectric and metallic layers selected such that the reflectivity of the stack in a wavelength range of between 700 nm and 3 ?m is greater than the reflectivity of a silicon oxide layer having a thickness equal to that of the stack. The substrate also comprises a silicon layer between the electrically insulating layer and the silicon-germanium active layer. The disclosure also relates to a method for the production of such a substrate.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: December 26, 2023
    Assignee: SOITEC
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot, Christelle Michau
  • Publication number: 20230230874
    Abstract: A method for transferring a thin layer onto a carrier substrate comprises preparing a carrier substrate using a preparation method involving supplying a base substrate having, on a main face, a charge-trapping layer and forming a dielectric layer having a thickness greater than 200 nm on the charge-trapping layer. Once the dielectric layer is formed, the ionized deposition and sputtering of the dielectric layer are simultaneously performed. The transfer method also comprises assembling, by way of molecular adhesion and with an unpolished free face of the dielectric layer, a donor substrate to the dielectric layer of the carrier substrate, the donor substrate having an embrittlement plane defining the thin layer. Finally, the method comprises splitting the donor substrate at the embrittlement plane to release the thin layer and to transfer it onto the carrier substrate.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 20, 2023
    Inventors: Bruno Clemenceau, Ludovic Ecarnot, Aymen Ghorbel, Marcel Broekaart, Daniel Delprat, Séverin Rouchier, Stephane Thieffry, Carine Duret
  • Publication number: 20220319910
    Abstract: A process for hydrophilic bonding first and second substrates, comprising: —bringing the first and second substrates into contact to form a bonding interface between main surfaces of the first and second substrates, and —applying a heat treatment to close the bonding interface. The process further comprises, before the step of bringing into contact, depositing, on the main surface of the first and/or second substrate, a bonding layer comprising a non-metallic material that is permeable to dihydrogen and that has, at the temperature of the heat treatment, a yield strength lower than that of at least one of the materials of the first substrate and of the second substrate located at the bonding interface. The layer has a thickness between 1 and 6 nm, and the heat treatment is carried out at a temperature lower than or equal to 900° C., and preferably lower than or equal to 600° C.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 6, 2022
    Inventors: Vincent Larrey, François Rieutord, Jean-Michel Hartmann, Frank Fournel, Didier Landru, Oleg Kononchuk, Ludovic Ecarnot
  • Publication number: 20220157882
    Abstract: A substrate for a front-side type image sensor includes a supporting semiconductor substrate, an electrically insulating layer, and a silicon-germanium semiconductor layer, known as the active layer. The electrically insulating layer includes a stack of dielectric and metallic layers selected such that the reflectivity of the stack in a wavelength range of between 700 nm and 3 ?m is greater than the reflectivity of a silicon oxide layer having a thickness equal to that of the stack. The substrate also comprises a silicon layer between the electrically insulating layer and the silicon-germanium active layer. The disclosure also relates to a method for the production of such a substrate.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 19, 2022
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot, Christelle Michau
  • Patent number: 11282889
    Abstract: A substrate for a front-side type image sensor includes a supporting semiconductor substrate, an electrically insulating layer, and a silicon-germanium semiconductor layer, known as the active layer. The electrically insulating layer includes a stack of dielectric and metallic layers selected such that the reflectivity of the stack in a wavelength range of between 700 nm and 3 ?m is greater than the reflectivity of a silicon oxide layer having a thickness equal to that of the stack. The substrate also comprises a silicon layer between the electrically insulating layer and the silicon-germanium active layer. The disclosure also relates to a method for the production of such a substrate.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 22, 2022
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot, Christelle Michau
  • Publication number: 20220059603
    Abstract: A method of manufacturing a substrate for a front-facing image sensor, comprises:—providing a donor substrate comprising a semiconductor layer to be transferred,—providing a semiconductor carrier substrate,—bonding the donor substrate to the carrier substrate, an electrically insulating layer being at the bonding interface,—transferring the semiconductor layer to the carrier substrate,—implanting gaseous ions in the carrier substrate via the transferred semiconductor layer and the electrically insulating layer, and—after the implantation, epitaxially growing an additional semiconductor layer on the transferred semiconductor layer.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 24, 2022
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Damien Massy, Nadia Ben Mohamed, Nicolas Daval, Christophe Girard, Christophe Maleville
  • Patent number: 11205702
    Abstract: A method for manufacturing a structure comprising a first substrate comprising at least one electronic component likely to be damaged by a temperature higher than 400° C. and a semiconductor layer extending on the first substrate comprises: (a) providing a first bonding metal layer on the first substrate, (b) providing a second substrate comprising successively: a semiconductor base substrate, a stack of a plurality of semiconductor epitaxial layers, a layer of SixGe1-x, with 0?x?1 being located at the surface of said stack opposite to the base substrate, and a second bonding metal layer, (c) bonding the first substrate and the second substrate through the first and second bonding metal layers at a temperature lower than or equal to 400° C., and (d) removing a part of the second substrate so as to transfer the layer of SixGe1-x on the first substrate using a selective etching process.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 21, 2021
    Assignee: Soitec
    Inventors: Christophe Figuet, Ludovic Ecarnot, Bich-Yen Nguyen, Walter Schwarzenbach, Daniel Delprat, Ionut Radu
  • Publication number: 20210384223
    Abstract: The invention relates to a front-side imager comprising in succession: —a semiconductor carrier substrate, a first electrically insulating separating layer, and a single-crystal semiconductor layer, called the active layer, comprising a matrix array of photodiodes, wherein the imager further comprises between the carrier substrate and the first electrically insulating layer: —a second electrically insulating separating layer, and —a second semiconductor or electrically conductive layer, called the intermediate layer, arranged between the second separating layer and the first separating layer, the second separating layer being thicker than the first separating layer.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 9, 2021
    Inventors: Walter Schwarzenbach, Manuel Sellier, Ludovic Ecarnot
  • Publication number: 20210366763
    Abstract: A semiconductor on insulator type structure, which may be used for a front side type imager, successively comprises, from its rear side to its front side, a semiconductor support substrate, an electrically insulating layer and an active layer comprising a monocrystalline semiconductor material. The active layer is made of a semiconductor material having a state of mechanical stress with respect to the support substrate, and the support substrate comprises, on its rear side, a silicon oxide layer, the thickness of the oxide layer being chosen to compensate bow induced by the mechanical stress between the active layer and the support substrate during cooling of the structure after the formation by epitaxy of at least a part of the active layer on the support substrate.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 25, 2021
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot
  • Patent number: 11127624
    Abstract: A semiconductor on insulator type structure, which may be used for a front side type imager, successively comprises, from its rear side to its front side, a semiconductor support substrate, an electrically insulating layer and an active layer comprising a monocrystalline semiconductor material. The active layer is made of a semiconductor material having a state of mechanical stress with respect to the support substrate, and the support substrate comprises, on its rear side, a silicon oxide layer, the thickness of the oxide layer being chosen to compensate bow induced by the mechanical stress between the active layer and the support substrate during cooling of the structure after the formation by epitaxy of at least a part of the active layer on the support substrate.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 21, 2021
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot
  • Patent number: 11127775
    Abstract: A substrate for a front-side-type image sensor includes, successively, a supporting semiconductor substrate, an electrically insulating layer, and a semiconductor layer, known as the active layer. The active layer is an epitaxial layer of silicon-germanium having a germanium content of less than 10%. The disclosure also relates to a method for the production of such a substrate.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: September 21, 2021
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Oleg Kononchuk, Ludovic Ecarnot, Christelle Michau
  • Patent number: 11114314
    Abstract: A method of forming a semiconductor structure includes introducing, at selected conditions, hydrogen and helium species (e.g., ions) in a temporary support to form a plane of weakness at a predetermined depth therein, and to define a superficial layer and a residual part of the temporary support; forming on the temporary support an interconnection layer; placing at least one semiconductor chip on the interconnection layer; assembling a stiffener on a back side of the at least one semiconductor chip; and providing thermal energy to the temporary support to detach the residual part and provide the semiconductor structure. The interconnection layer forms an interposer free from any through via.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 7, 2021
    Assignee: Soitec
    Inventors: Bich-Yen Nguyen, Ludovic Ecarnot, Nadia Ben Mohamed, Christophe Malville
  • Publication number: 20210202326
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type, comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Application
    Filed: September 3, 2019
    Publication date: July 1, 2021
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Publication number: 20200331750
    Abstract: Methods of forming semiconductor structures comprising one or more cavities, which may be used in the formation of microelectromechanical system (MEMS) transducers, involve forming one or more cavities in a first substrate, providing a sacrificial material within the one or more cavities, bonding a second substrate over a surface of the first substrate, forming one or more apertures through a portion of the first substrate to the sacrificial material, and removing the sacrificial material from within the one or more cavities. Structures and devices are fabricated using such methods.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Mariam Sadaka, Ludovic Ecarnot
  • Publication number: 20200328094
    Abstract: A method of forming a semiconductor structure includes introducing, at selected conditions, hydrogen and helium species (e.g., ions) in a temporary support to form a plane of weakness at a predetermined depth therein, and to define a superficial layer and a residual part of the temporary support; forming on the temporary support an interconnection layer; placing at least one semiconductor chip on the interconnection layer assembling a stiffener on a back side of the at least one semiconductor chip; and providing thermal energy to the temporary support to detach the residual part and provide the semiconductor structure. The interconnection layer forms an interposer free from any through via.
    Type: Application
    Filed: May 24, 2017
    Publication date: October 15, 2020
    Inventors: Bich-Yen Nguyen, Ludovic Ecarnot, Nadia Ben Mohamed, Christophe Malville
  • Publication number: 20200295138
    Abstract: A method for manufacturing a structure comprising a first substrate comprising at least one electronic component likely to be damaged by a temperature higher than 400° C. and a semiconductor layer extending on the first comprises: (a) providing a first bonding metal layer on the first substrate, (b) providing a second substrate comprising successively: a semiconductor base substrate, a stack of a plurality of semiconductor epitaxial layers, a layer of SixGe1-x, with 0?x?1 being located at the surface of said stack opposite to the base substrate, and a second bonding metal layer, (c) bonding the first substrate and the second substrate through the first and second bonding metal layers at a temperature lower than or equal to 400° C., and (d) removing a part of the second substrate so as to transfer the layer of SixGe1-x on the first substrate using a selective etching process.
    Type: Application
    Filed: March 31, 2017
    Publication date: September 17, 2020
    Inventors: Christophe Figuet, Ludovic Ecarnot, Bich-Yen Nguyen, Walter Schwarzenbach, Daniel Delprat, Ionut Radu
  • Patent number: 10777447
    Abstract: A method for determining a suitable implanting energy of at least two atomic species in a donor substrate to create a weakened zone defining a monocrystalline semiconductor layer to be transferred onto a receiver substrate, comprises the following steps: (i) forming a dielectric layer on at least one of the donor substrate and the receiver substrate; (ii) co-implanting the species in the donor substrate; (iii) bonding the donor substrate on the receiver substrate; (iv) detaching the donor substrate along the weakened zone to transfer the monocrystalline semiconductor layer and recover the remainder of the donor substrate; (v) inspecting the peripheral crown of the remainder of the donor substrate, or of the receiver substrate on which the monocrystalline semiconductor layer was transferred at step (iv); (vi) if the crown exhibits zones transferred onto the receiver substrate, determining the fact that the implanting energy at step (ii) is too high; (vii) if said the crown does not exhibit zones transferred on
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 15, 2020
    Assignee: Soitec
    Inventors: Ludovic Ecarnot, Nadia Ben Mohammed, Carine Duret