Patents by Inventor Ludwig Eberler

Ludwig Eberler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11774533
    Abstract: An imaging apparatus has an MRT system with an MR receiving antenna configured to receive a first receive signal containing an MR signal from an object to be examined during an examination period. The imaging apparatus includes a modality for examining the object and/or for acting on the object via mechanical or electromagnetic waves, wherein the modality has an electronic circuit. The imaging apparatus includes an auxiliary antenna arranged and configured to receive a second receive signal containing an interference signal generated by the electronic circuit during the examination period. The imaging apparatus has a processing system configured to suppress interference in the first receive signal based on the first and the second receive signal.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: October 3, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Philipp Hoecht, Juergen Nistler, Ludwig Eberler, Stephan Kannengiesser, Dieter Ritter, Stephan Biber, Rainer Schneider, Jan Bollenbeck
  • Publication number: 20230305085
    Abstract: A gantry tube for a medical imaging system. The gantry tube includes a first tube located within a second tube, wherein the first tube is oriented about a longitudinal axis of the system. The gantry tube also includes a plurality of wall elements that extend between the first and second tubes, wherein the walls and first and second tubes form a plurality of channels that extend in an axial direction substantially parallel to the longitudinal axis wherein each channel is configured to hold a detector of the system. A detector is inserted into or removed from an associated channel in an axial direction from either a first end or a second end of the gantry tube.
    Type: Application
    Filed: August 23, 2021
    Publication date: September 28, 2023
    Inventors: Ludwig Eberler, James L. Corbeil, Martin Schramm, Stefan Stocker
  • Patent number: 11609288
    Abstract: A magnetic resonance apparatus including: a scanner; a patient receiving region which is at least partially surrounded by the scanner; and a lighting apparatus designed to light the patient receiving region. The lighting apparatus includes at least one lighting element; and two neutralizing elements designed to at least partially neutralize a voltage that is induced by a high-frequency field of the scanner.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: March 21, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Markus Vester
  • Publication number: 20220373626
    Abstract: An imaging apparatus has an MRT system with an MR receiving antenna configured to receive a first receive signal containing an MR signal from an object to be examined during an examination period. The imaging apparatus includes a modality for examining the object and/or for acting on the object via mechanical or electromagnetic waves, wherein the modality has an electronic circuit. The imaging apparatus includes an auxiliary antenna arranged and configured to receive a second receive signal containing an interference signal generated by the electronic circuit during the examination period. The imaging apparatus has a processing system configured to suppress interference in the first receive signal based on the first and the second receive signal.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 24, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: Philipp HOECHT, Juergen NISTLER, Ludwig EBERLER, Stephan KANNENGIESSER, Dieter RITTER, Stephan BIBER, Rainer SCHNEIDER, Jan BOLLENBECK
  • Publication number: 20220091206
    Abstract: A method is for determining a heating effect of an imaging sequence of a second imaging modality on a detector of a first modality of a combined imaging device in dependence of a reference imaging sequence of the second imaging modality. A further method is for compensating a heating effect of an imaging sequence of a second imaging modality on a detector of a first modality of a combined imaging device. Furthermore, a combined imaging device includes a magnetic resonance imaging device and a first modality including a detector and a temperature compensation unit configured to compensate for a temperature variation of the detector. The combined imaging device is configured to perform a method for determining a heating effect of an imaging sequence of the magnetic resonance imaging device on the detector of the first modality in dependence of a reference imaging sequence of the magnetic resonance imaging device.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 24, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: Ludwig EBERLER, Ralf LADEBECK, Philipp HOECHT, Sanghee CHO, Robert A. MINTZER, Nan ZHANG, Johannes BREUER, Martin JUDENHOFER
  • Publication number: 20220091204
    Abstract: A magnetic resonance apparatus including: a scanner; a patient receiving region which is at least partially surrounded by the scanner; and a lighting apparatus designed to light the patient receiving region. The lighting apparatus includes at least one lighting element; and two neutralizing elements designed to at least partially neutralize a voltage that is induced by a high-frequency field of the scanner.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 24, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Markus Vester
  • Patent number: 11131730
    Abstract: A magnetic resonance coil having at least one tuning device for tuning the magnetic resonance coil, a magnetic resonance device, and a method for tuning a magnetic resonance coil are provided. The at least one tuning device includes a plurality of capacitors that are mechanically interlinked.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 28, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Razvan Lazar, Volker Matschl, Jürgen Nistler, Martin Schramm
  • Patent number: 10930428
    Abstract: The disclosure relates to a compensation capacitor for an antenna of a magnetic resonance scanner and a corresponding antenna with a compensation capacitor. The compensation capacitor has a first electrode and a second electrode arranged in parallel. An insulation material configured to resist high voltages and a dielectric with low dielectric losses are arranged between the first and the second electrode. The second electrode and/or the dielectric may be moved relative to the first electrode such that a surface area of a projection of the surface of the first electrode along the surface normal of the first electrode to the surface of the second electrode and/or the dielectric is variable.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: February 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Razvan Lazar, Volker Matschl, Jürgen Nistler, Martin Schramm
  • Patent number: 10557900
    Abstract: The embodiments relate to a body coil, to a magnetic resonance device, and to a method for operating a magnetic resonance device. The body coil includes at least one antenna unit and at least one pre-amplification unit, wherein the pre-amplification unit is arranged at a feed point of the antenna unit, wherein the pre-amplification unit has an input reflection factor at the feed point of the antenna unit whose value is greater than 0.7.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Volker Matschl, Jürgen Nistler
  • Patent number: 10534051
    Abstract: A radio-frequency shielding unit for shielding a radio-frequency antenna unit of a magnetic resonance apparatus and a magnetic resonance apparatus are provided. The radio-frequency shielding unit includes a support layer, a first conducting layer, an insulating layer, and a second conducting layer. The first conducting layer is arranged between the support layer and the insulating layer, and the insulating layer is arranged between the first conducting layer and the second conducting layer.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 14, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Jürgen Nistler, Markus Vester
  • Publication number: 20190079153
    Abstract: A magnetic resonance coil having at least one tuning device for tuning the magnetic resonance coil, a magnetic resonance device, and a method for tuning a magnetic resonance coil are provided. The at least one tuning device includes a plurality of capacitors that are mechanically interlinked.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 14, 2019
    Inventors: Ludwig Eberler, Razvan Lazar, Volker Matschl, Jürgen Nistler, Martin Schramm
  • Publication number: 20190019620
    Abstract: The disclosure relates to a compensation capacitor for an antenna of a magnetic resonance scanner and a corresponding antenna with a compensation capacitor. The compensation capacitor has a first electrode and a second electrode arranged in parallel. An insulation material configured to resist high voltages and a dielectric with low dielectric losses are arranged between the first and the second electrode. The second electrode and/or the dielectric may be moved relative to the first electrode such that a surface area of a projection of the surface of the first electrode along the surface normal of the first electrode to the surface of the second electrode and/or the dielectric is variable.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 17, 2019
    Inventors: Ludwig Eberler, Razvan Lazar, Volker Matschl, Jürgen Nistler, Martin Schramm
  • Patent number: 10162024
    Abstract: An MR device has at least one distribution network for distributing an electrical input signal (to a number of feeding points of an MR antenna. The distribution network has at least one first signal output and one second signal output connected to a node, a first phase-shifting element disposed between the node and the first signal output, and a second phase-shifting element disposed between the node and the second signal output. The first phase-shifting element and the second phase-shifting element create a different phase shift, and the first phase-shifting element and the second phase-shifting element are embodied as electrical lines of different length. The distribution network is applicable, for example, to feeding signals to a body coil of the MR device, especially a so-called birdcage antenna.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 25, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ludwig Eberler, Jürgen Nistler
  • Publication number: 20180364322
    Abstract: A radio-frequency shielding unit for shielding a radio-frequency antenna unit of a magnetic resonance apparatus and a magnetic resonance apparatus are provided. The radio-frequency shielding unit includes a support layer, a first conducting layer, an insulating layer, and a second conducting layer. The first conducting layer is arranged between the support layer and the insulating layer, and the insulating layer is arranged between the first conducting layer and the second conducting layer.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: Ludwig Eberler, Jürgen Nistler, Markus Vester
  • Patent number: 9952298
    Abstract: A method and a device are provided for spatial homogenization of the field strength of voltages of radiofrequency pulses of a number of RF transmitters, wherein (a) the measured complex voltages, induced by the electromagnetic field of the antenna, of a plurality of field probes, which are disposed in the vicinity of the antenna, are respectively superposed with a fitting phase shift and used for establishing the new desired homogenized voltages of the radiofrequency pulses of the antenna by a complex transfer function, and/or (b) output signals of at least two directional couplers on the RF feed lines of the antenna are superposed in a respectively fitting phase-shifted manner and these are used to establish complex impedances or scattering parameters of a complex scattering matrix of the antenna, which are used for establishing the new desired homogenized voltages of the radiofrequency pulses of the antenna.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 24, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ludwig Eberler, Jürgen Nistler
  • Patent number: 9829549
    Abstract: A whole-body coil for a magnetic resonance tomography device includes one or more compensation capacitors between a high-frequency antenna and an RF shield. The one or more compensation capacitors each have variable capacitance caused by a variation in a distance of the RF shield to the high-frequency antenna.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: November 28, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ludwig Eberler, Jürgen Nistler, Markus Vester
  • Patent number: 9759788
    Abstract: The embodiments relate to a magnetic resonance coil for a magnetic resonance device with a measuring chamber for an examination object and a cylindrical birdcage antenna arrangement having a plurality of antenna elements disposed at least in some areas around a measuring chamber in the form of circumferential antenna rings or axial outer rods connecting the rings. The antenna elements include electric components, e.g., reactive capacitive and/or inductive systems. The magnetic resonance coil also has at least two antenna feeds, e.g., phase-offset in relation to one another by 90°, by which radio-frequency energy is able to be supplied to the birdcage antenna arrangement. The antenna feeds include at least one symmetrical feed via at least one of the electric components of the birdcage antenna arrangement as well is at least one assigned asymmetrical feed between the birdcage antenna arrangement and a screen connection.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: September 12, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ludwig Eberler, Razvan Lazar, Jürgen Nistler
  • Publication number: 20170016969
    Abstract: The embodiments relate to a body coil, to a magnetic resonance device, and to a method for operating a magnetic resonance device. The body coil includes at least one antenna unit and at least one pre-amplification unit, wherein the pre-amplification unit is arranged at a feed point of the antenna unit, wherein the pre-amplification unit has an input reflection factor at the feed point of the antenna unit whose value is greater than 0.7.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 19, 2017
    Inventors: Ludwig Eberler, Volker Matschl, Jürgen Nistler
  • Publication number: 20160238678
    Abstract: An MR device has at least one distribution network for distributing an electrical input signal (to a number of feeding points of an MR antenna. The distribution network has at least one first signal output and one second signal output connected to a node, a first phase-shifting element disposed between the node and the first signal output, and a second phase-shifting element disposed between the node and the second signal output. The first phase-shifting element and the second phase-shifting element create a different phase shift, and the first phase-shifting element and the second phase-shifting element are embodied as electrical lines of different length. The distribution network is applicable, for example, to feeding signals to a body coil of the MR device, especially a so-called birdcage antenna.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 18, 2016
    Inventors: Ludwig Eberler, Jürgen Nistler
  • Patent number: 9316708
    Abstract: A patient support apparatus for a medical imaging apparatus, such as a magnetic resonance apparatus, is proposed. The patient support apparatus has a couch, a lifting unit for vertical movement of the couch, a travel unit, and at least one sensor unit to detect at least one weight variable for determining the weight of a patient. The at least one sensor unit has at least one sensor element, which is disposed on the lifting unit and/or on the travel unit.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: April 19, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ludwig Eberler, Razvan Lazar, Volker Matschl, Jürgen Nistler, Wolfgang Renz