Patents by Inventor Luke Holderman

Luke Holderman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846156
    Abstract: Disclosed herein are embodiments of a production valve. In one embodiment, a production valve includes a tubular having one or more first openings therein; a sliding member positioned within the tubular and having one or more second openings therein, configured to move between a first closed position wherein the first openings are offset from the second openings to close a fluid path and a second open position wherein the first openings are aligned with the second openings to open the fluid path; a remote open member positioned within the tubular, coupled to the sliding member in the first position and decoupled from the sliding member in the second position; and a first and second seal positioned between the tubular and at least one of the sliding member or remote open member, the first seal having a first seal area, and the second seal having a second greater seal area.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: December 19, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Luke Holderman, Ibrahim El Mallawany, Stephen Michael Greci
  • Publication number: 20220195839
    Abstract: Disclosed herein are embodiments of a production valve. In one embodiment, a production valve includes a tubular having one or more first openings therein; a sliding member positioned within the tubular and having one or more second openings therein, configured to move between a first closed position wherein the first openings are offset from the second openings to close a fluid path and a second open position wherein the first openings are aligned with the second openings to open the fluid path; a remote open member positioned within the tubular, coupled to the sliding member in the first position and decoupled from the sliding member in the second position; and a first and second seal positioned between the tubular and at least one of the sliding member or remote open member, the first seal having a first seal area, and the second seal having a second greater seal area.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Luke Holderman, Ibrahim El Mallawany, Stephen Michael Greci
  • Patent number: 11193350
    Abstract: A device can include a collar positioned in a wellbore that can include an outer wall. The outer wall can define an inner area of the collar and can prevent fluid flow between the inner area of the collar and an outer area of the collar during a hydraulic fracturing process. The collar can be removed or dissolved to form a flow path to allow production fluid to flow between the inner area of the collar and the outer area of the collar subsequent to the hydraulic fracturing process.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 7, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Nicholas Kuo, Matthew Brian Roseman, Luke Holderman, Frank Giusti, Jr.
  • Publication number: 20210222510
    Abstract: Provided is a method for setting a downhole tool, and a downhole tool, and a well system employing the same. The method, in at least one aspect, includes positioning a downhole tool within a wellbore, the downhole tool including expandable metal configured to expand in response to hydrolysis, and subjecting the expandable metal to a wellbore fluid to expand the expandable metal into contact with one or more surfaces. The method, in at least one aspect, further includes applying a voltage to the expandable metal while the expandable metal is being subjected to the wellbore fluid.
    Type: Application
    Filed: January 18, 2021
    Publication date: July 22, 2021
    Inventors: Michael Linley Fripp, Luke Holderman, Richard Decena Ornelaz
  • Publication number: 20210164323
    Abstract: A device can include a collar positioned in a wellbore that can include an outer wall. The outer wall can define an inner area of the collar and can prevent fluid flow between the inner area of the collar and an outer area of the collar during a hydraulic fracturing process. The collar can be removed or dissolved to form a flow path to allow production fluid to flow between the inner area of the collar and the outer area of the collar subsequent to the hydraulic fracturing process.
    Type: Application
    Filed: November 17, 2017
    Publication date: June 3, 2021
    Inventors: Nicholas Kuo, Matthew Brian Roseman, Luke Holderman, Frank Giusti, Jr.
  • Patent number: 9388671
    Abstract: Disclosed is a swellable screen assembly having inflow control capabilities. One swellable screen assembly includes a base pipe comprising a sidewall portion defining at least one opening therein, a rigid member disposed about a first portion of the base pipe and having a piston arranged therein. The piston has a telescoping portion movably arranged within a non-telescoping portion. An autonomous valve is arranged within the piston and provides fluid communication between a filter medium disposed about the base pipe and the opening in the base pipe, the filter medium being coupled to the telescoping portion of the piston. A swellable material is disposed about a second portion of the base pipe and the filter medium is disposed about the swellable material, wherein, as the swellable material expands, the filter medium is displaced toward an inner surface of the wellbore, thereby extending the telescoping portion.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: July 12, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Luke Holderman
  • Patent number: 9382779
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 5, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason D Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Patent number: 9109423
    Abstract: An apparatus is described for controlling flow of fluid in a tubular positioned in a wellbore extending through a subterranean formation. A flow control system is placed in fluid communication with a main tubular. The flow control system has a flow ratio control system and a pathway dependent resistance system. The flow ratio control system has a first and second passageway, the production fluid flowing into the passageways with the ratio of fluid flow through the passageways related to the characteristic of the fluid flow. The pathway dependent resistance system includes a vortex chamber with a first and second inlet and an outlet, the first inlet of the pathway dependent resistance system in fluid communication with the first passageway of the fluid ratio control system and the second inlet in fluid communication with the second passageway of the fluid ratio control system.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: August 18, 2015
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Patent number: 9080410
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: July 14, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C Gano, Luke Holderman
  • Patent number: 8931566
    Abstract: An apparatus is described for controlling flow of fluid in a subterranean formation based on a selected characteristic of fluid flow, such as viscosity, velocity or density, as that characteristic varies over time. A pathway-dependent resistance assembly, such as a vortex chamber having two inlets and an outlet, provides varying resistance to fluid flow based on the ratio of flow from the inlets, the direction of flow as directed by the inlets, and the characteristic of the fluid. The incoming flow ratio is preferably determined by flowing fluid through a plurality of passageways having differing flow rate responses to fluid having differing characteristics. Fluid of a selected characteristic will encounter lesser resistance to flow across the system, while fluid of an un-favored characteristic will encounter greater resistance to flow. Thus, flow of well fluids can be autonomously restricted as the fluid characteristics change over time.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: January 13, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C Gano, Luke Holderman
  • Patent number: 8714266
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 6, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason D Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Patent number: 8657017
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason D Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20140048282
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20140048279
    Abstract: Disclosed is a swellable screen assembly having inflow control capabilities. One swellable screen assembly includes a base pipe comprising a sidewall portion defining at least one opening therein, a rigid member disposed about a first portion of the base pipe and having a piston arranged therein. The piston has a telescoping portion movably arranged within a non-telescoping portion. An autonomous valve is arranged within the piston and provides fluid communication between a filter medium disposed about the base pipe and the opening in the base pipe, the filter medium being coupled to the telescoping portion of the piston. A swellable material is disposed about a second portion of the base pipe and the filter medium is disposed about the swellable material, wherein, as the swellable material expands, the filter medium is displaced toward an inner surface of the wellbore, thereby extending the telescoping portion.
    Type: Application
    Filed: June 28, 2012
    Publication date: February 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Luke Holderman
  • Publication number: 20140034308
    Abstract: Methods and apparatus for running a completion string with sand screen assemblies through multiple zones are presented allowing sequential stimulation of zones, and production without multiple trips. An exemplary method includes running a completion string and isolating target zones. If desired, the formation can be produced prior to stimulation. To stimulate the zones, a first tubing valve is closed, for example by ball-drop, forcing fluid through the first screen assembly. After stimulating the zone is complete, a first screen valve is closed by increased tubing pressure. The first work string valve is re-opened by further increasing tubing pressure. A subsequent tubing valve is then closed, for example, by flowing the ball to the next ball seat. The process is repeated until all zones are stimulated. Valves are then opened at each screen assembly to allow production flow through the screen assemblies.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Luke Holderman, Jean-marc Lopez
  • Publication number: 20130180727
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Application
    Filed: April 13, 2012
    Publication date: July 18, 2013
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20130075107
    Abstract: An apparatus is described for controlling flow of fluid in a subterranean formation based on a selected characteristic of fluid flow, such as viscosity, velocity or density, as that characteristic varies over time. A pathway-dependent resistance assembly, such as a vortex chamber having two inlets and an outlet, provides varying resistance to fluid flow based on the ratio of flow from the inlets, the direction of flow as directed by the inlets, and the characteristic of the fluid. The incoming flow ratio is preferably determined by flowing fluid through a plurality of passageways having differing flow rate responses to fluid having differing characteristics. Fluid of a selected characteristic will encounter lesser resistance to flow across the system, while fluid of an un-favored characteristic will encounter greater resistance to flow. Thus, flow of well fluids can be autonomously restricted as the fluid characteristics change over time.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 28, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20120234557
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20120211243
    Abstract: Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. In one embodiment, a fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. In one embodiment, the diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman
  • Publication number: 20110308806
    Abstract: An apparatus is described for controlling flow of fluid in a tubular positioned in a wellbore extending through a subterranean formation. A flow control system is placed in fluid communication with a main tubular. The flow control system has a flow ratio control system and a pathway dependent resistance system. The flow ratio control system has a first and second passageway, the production fluid flowing into the passageways with the ratio of fluid flow through the passageways related to the characteristic of the fluid flow. The pathway dependent resistance system includes a vortex chamber with a first and second inlet and an outlet, the first inlet of the pathway dependent resistance system in fluid communication with the first passageway of the fluid ratio control system and the second inlet in fluid communication with the second passageway of the fluid ratio control system.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Inventors: Jason D. Dykstra, Michael Linley Fripp, Orlando DeJesus, John C. Gano, Luke Holderman