Patents by Inventor Luke Tilman Peterson

Luke Tilman Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190392629
    Abstract: Rendering system combines point sampling and volume sampling operations to produce rendering outputs. For example, to determine color information for a surface location in a 3-D scene, one or more point sampling operations are conducted in a volume around the surface location, and one or more sampling operations of volumetric light transport data are performed farther from the surface location. A transition zone between point sampling and volume sampling can be provided, in which both point and volume sampling operations are conducted. Data obtained from point and volume sampling operations can be blended in determining color information for the surface location. For example, point samples are obtained by tracing a ray for each point sample, to identify an intersection between another surface and the ray, to be shaded, and volume samples are obtained from a nested 3-D grids of volume elements expressing light transport data at different levels of granularity.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Cuneyt Ozdas, Luke Tilman Peterson
  • Patent number: 10453245
    Abstract: Rendering system combines point sampling and volume sampling operations to produce rendering outputs. For example, to determine color information for a surface location in a 3-D scene, one or more point sampling operations are conducted in a volume around the surface location, and one or more sampling operations of volumetric light transport data are performed farther from the surface location. A transition zone between point sampling and volume sampling can be provided, in which both point and volume sampling operations are conducted. Data obtained from point and volume sampling operations can be blended in determining color information for the surface location. For example, point samples are obtained by tracing a ray for each point sample, to identify an intersection between another surface and the ray, to be shaded, and volume samples are obtained from a nested 3-D grids of volume elements expressing light transport data at different levels of granularity.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 22, 2019
    Assignee: Imagination Technologies Limited
    Inventors: Cuneyt Ozdas, Luke Tilman Peterson
  • Publication number: 20190172176
    Abstract: Aspects include a multistage collector to receive outputs from plural processing elements. Processing elements may comprise (each or collectively) a plurality of clusters, with one or more ALUs that may perform SIMD operations on a data vector and produce outputs according to the instruction stream being used to configure the ALU(s). The multistage collector includes substituent components each with at least one input queue, a memory, a packing unit, and an output queue; these components can be sized to process groups of input elements of a given size, and can have multiple input queues and a single output queue. Some components couple to receive outputs from the ALUs and others receive outputs from other components. Ultimately, the multistage collector can output groupings of input elements. Each grouping of elements (e.g., at input queues, or stored in the memories of component) can be formed based on matching of index elements.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: James Alexander McCombe, Steven John Clohset, Jason Rupert Redgrave, Luke Tilman Peterson
  • Publication number: 20190147638
    Abstract: A graphics processor architecture provides for scan conversion and ray tracing approaches to visible surface determination as concurrent and separate processes. Surfaces can be identified for shading by scan conversion and ray tracing. Data produced by each can be normalized, so that instances of shaders, being executed on a unified shading computation resource, can shade surfaces originating from both ray tracing and rasterization. Such resource also may execute geometry shaders. The shaders can emit rays to be tested for intersection by the ray tracing process. Such shaders can complete, without waiting for those emitted rays to complete. Where scan conversion operates on tiles of 2-D screen pixels, the ray tracing can be tile aware, and controlled to prioritize testing of rays based on scan conversion status. Ray population can be controlled by feedback to any of scan conversion, and shading.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Inventors: John W. Howson, Luke Tilman Peterson, Steven J. Clohset
  • Patent number: 10242426
    Abstract: Aspects include a multistage collector to receive outputs from plural processing elements. Processing elements may comprise (each or collectively) a plurality of clusters, with one or more ALUs that may perform SIMD operations on a data vector and produce outputs according to the instruction stream being used to configure the ALU(s). The multistage collector includes substituent components each with at least one input queue, a memory, a packing unit, and an output queue; these components can be sized to process groups of input elements of a given size, and can have multiple input queues and a single output queue. Some components couple to receive outputs from the ALUs and others receive outputs from other components. Ultimately, the multistage collector can output groupings of input elements. Each grouping of elements (e.g., at input queues, or stored in the memories of component) can be formed based on matching of index elements.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: March 26, 2019
    Assignee: Imagination Technologies Limited
    Inventors: James Alexander McCombe, Steven John Clohset, Jason Rupert Redgrave, Luke Tilman Peterson
  • Patent number: 10217266
    Abstract: A graphics processor architecture provides for scan conversion and ray tracing approaches to visible surface determination as concurrent and separate processes. Surfaces can be identified for shading by scan conversion and ray tracing. Data produced by each can be normalized, so that instances of shaders, being executed on a unified shading computation resource, can shade surfaces originating from both ray tracing and rasterization. Such resource also may execute geometry shaders. The shaders can emit rays to be tested for intersection by the ray tracing process. Such shaders can complete, without waiting for those emitted rays to complete. Where scan conversion operates on tiles of 2-D screen pixels, the ray tracing can be tile aware, and controlled to prioritize testing of rays based on scan conversion status. Ray population can be controlled by feedback to any of scan conversion, and shading.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: February 26, 2019
    Assignee: Imagination Technologies Limited
    Inventors: John W. Howson, Luke Tilman Peterson, Steven J. Clohset
  • Publication number: 20180329753
    Abstract: Aspects include computation systems that can identify computation instances that are not capable of being reentrant, or are not reentrant capable on a target architecture, or are non-reentrant as a result of having a memory conflict in a particular execution situation. For example, a system can have a plurality of computation units, each with an independently schedulable SIMD vector. Computation instances can be defined by a program module, and a data element(s) that may be stored in a local cache for a particular computation unit of the plurality. Each local cache does not maintain coherency controls for such data elements. During scheduling, a scheduler can maintain a list of running (or runnable) instances, and attempt to schedule new computation instances by determining whether any new computation instance conflicts with a running instance and responsively defer scheduling. Such memory conflict checks can be conditioned on a flag or other indication of the potential for non-reentrancy.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Inventors: Luke Tilman PETERSON, James Alexander McCombe
  • Patent number: 10061618
    Abstract: Aspects include computation systems that can identify computation instances that are not capable of being reentrant, or are not reentrant capable on a target architecture, or are non-reentrant as a result of having a memory conflict in a particular execution situation. A system can have a plurality of computation units, each with an independently schedulable SIMD vector. Computation instances can be defined by a program module, and a data element(s) that may be stored in a local cache for a particular computation unit. Each local cache does not maintain coherency controls for such data elements. During scheduling, a scheduler can maintain a list of running (or runnable) instances, and attempt to schedule new computation instances by determining whether any new computation instance conflicts with a running instance and responsively defer scheduling. Memory conflict checks can be conditioned on a flag or other indication of the potential for non-reentrancy.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 28, 2018
    Assignee: Imagination Technologies Limited
    Inventors: Luke Tilman Peterson, James Alexander McCombe
  • Patent number: 9940687
    Abstract: Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: April 10, 2018
    Assignee: Imagination Technologies Limited
    Inventors: Luke Tilman Peterson, Ryan R. Salsbury, Sean Matthew Gies, Steven John Clohset
  • Publication number: 20170278297
    Abstract: Rendering system combines point sampling and volume sampling operations to produce rendering outputs. For example, to determine color information for a surface location in a 3-D scene, one or more point sampling operations are conducted in a volume around the surface location, and one or more sampling operations of volumetric light transport data are performed farther from the surface location. A transition zone between point sampling and volume sampling can be provided, in which both point and volume sampling operations are conducted. Data obtained from point and volume sampling operations can be blended in determining color information for the surface location. For example, point samples are obtained by tracing a ray for each point sample, to identify an intersection between another surface and the ray, to be shaded, and volume samples are obtained from a nested 3-D grids of volume elements expressing light transport data at different levels of granularity.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Inventors: Cuneyt Ozdas, Luke Tilman Peterson
  • Patent number: 9704283
    Abstract: Rendering system combines point sampling and volume sampling operations to produce rendering outputs. For example, to determine color information for a surface location in a 3-D scene, one or more point sampling operations are conducted in a volume around the surface location, and one or more sampling operations of volumetric light transport data are performed farther from the surface location. A transition zone between point sampling and volume sampling can be provided, in which both point and volume sampling operations are conducted. Data obtained from point and volume sampling operations can be blended in determining color information for the surface location. For example, point samples are obtained by tracing a ray for each point sample, to identify an intersection between another surface and the ray, to be shaded, and volume samples are obtained from a nested 3-D grids of volume elements expressing light transport data at different levels of granularity.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: July 11, 2017
    Assignee: Imagination Technologies Limited
    Inventors: Cuneyt Ozdas, Luke Tilman Peterson
  • Publication number: 20170178282
    Abstract: Aspects include a multistage collector to receive outputs from plural processing elements. Processing elements may comprise (each or collectively) a plurality of clusters, with one or more ALUs that may perform SIMD operations on a data vector and produce outputs according to the instruction stream being used to configure the ALU(s). The multistage collector includes substituent components each with at least one input queue, a memory, a packing unit, and an output queue; these components can be sized to process groups of input elements of a given size, and can have multiple input queues and a single output queue. Some components couple to receive outputs from the ALUs and others receive outputs from other components. Ultimately, the multistage collector can output groupings of input elements. Each grouping of elements (e.g., at input queues, or stored in the memories of component) can be formed based on matching of index elements.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Inventors: James Alexander McCombe, Steven John Clohset, Jason Rupert Redgrave, Luke Tilman Peterson
  • Patent number: 9665970
    Abstract: Aspects include, for example, a method for interpreting information in a computer program, or profiling such a program to estimate a group size for instances of that program (program module, or portion thereof). Such a method can be used in a system that supports collecting outputs of executing instances, where those outputs can specify new program instances. Scheduling of new instances (or allocation of resources for executing such instances) can be deferred. A trigger to begin scheduling (or allocation) for a collection of instances uses a target group size for that program. Thus, different programs can have different group sizes, which can be set explicitly, or based on profiling. The profiling can occur during one or more of pre-execution and during execution. The group size estimate can be an input into an algorithm that also accounts for system state during execution.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: May 30, 2017
    Assignee: Imagination Technologies Limited
    Inventors: Jason Rupert Redgrave, Steven John Clohset, James Alexander McCombe, Luke Tilman Peterson
  • Patent number: 9595074
    Abstract: Aspects include a multistage collector to receive outputs from plural processing elements. Processing elements may comprise (each or collectively) a plurality of clusters, with one or more ALUs that may perform SIMD operations on a data vector and produce outputs according to the instruction stream being used to configure the ALU(s). The multistage collector includes substituent components each with at least one input queue, a memory, a packing unit, and an output queue; these components can be sized to process groups of input elements of a given size, and can have multiple input queues and a single output queue. Some components couple to receive outputs from the ALUs and others receive outputs from other components. Ultimately, the multistage collector can output groupings of input elements. Each grouping of elements (e.g., at input queues, or stored in the memories of component) can be formed based on matching of index elements.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 14, 2017
    Assignee: Imagination Technologies Limited
    Inventors: James Alexander McCombe, Steven John Clohset, Jason Rupert Redgrave, Luke Tilman Peterson
  • Publication number: 20160350154
    Abstract: In some aspects, finer grained parallelism is achieved by segmenting programmatic workloads into smaller discretized portions, where a first element can be indicative both of a configuration or program to be executed, and a first data set to be used in such execution, while a second element can be indicative of a second data element or group. The discretized portions can cause program execute on distributed processors. Approaches to selecting processors, and allocating local memory associated with those processors are disclosed. In one example, discretized portions that share a program have an anti-affinity to cause dispersion, for initial execution assignment. Flags, such as programmer and compiler generated flags can be used in determining such allocations. Workloads can be grouped according to compatibility of memory usage requirements.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Steven John Clohset, James Alexander McCombe, Luke Tilman Peterson
  • Patent number: 9478062
    Abstract: In some aspects, finer grained parallelism is achieved by segmenting programmatic workloads into smaller discretized portions, where a first element can be indicative both of a configuration or program to be executed, and a first data set to be used in such execution, while a second element can be indicative of a second data element or group. The discretized portions can cause program execute on distributed processors. Approaches to selecting processors, and allocating local memory associated with those processors are disclosed. In one example, discretized portions that share a program have an anti-affinity to cause dispersion, for initial execution assignment. Flags, such as programmer and compiler generated flags can be used in determining such allocations. Workloads can be grouped according to compatibility of memory usage requirements.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 25, 2016
    Assignee: Imagination Technologies Limited
    Inventors: Stephen John Clohset, James Alexander McCombe, Luke Tilman Peterson
  • Publication number: 20160284118
    Abstract: A graphics processor architecture provides for scan conversion and ray tracing approaches to visible surface determination as concurrent and separate processes. Surfaces can be identified for shading by scan conversion and ray tracing. Data produced by each can be normalized, so that instances of shaders, being executed on a unified shading computation resource, can shade surfaces originating from both ray tracing and rasterization. Such resource also may execute geometry shaders. The shaders can emit rays to be tested for intersection by the ray tracing process. Such shaders can complete, without waiting for those emitted rays to complete. Where scan conversion operates on tiles of 2-D screen pixels, the ray tracing can be tile aware, and controlled to prioritize testing of rays based on scan conversion status. Ray population can be controlled by feedback to any of scan conversion, and shading.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: John W. Howson, Luke Tilman Peterson, Steven J. Clohset
  • Patent number: 9424685
    Abstract: A graphics processor architecture provides for scan conversion and ray tracing approaches to visible surface determination as concurrent and separate processes. Surfaces can be identified for shading by scan conversion and ray tracing. Data produced by each can be normalized, so that instances of shaders, being executed on a unified shading computation resource, can shade surfaces originating from both ray tracing and rasterization. Such resource also may execute geometry shaders. The shaders can emit rays to be tested for intersection by the ray tracing process. Such shaders can complete, without waiting for those emitted rays to complete. Where scan conversion operates on tiles of 2-D screen pixels, the ray tracing can be tile aware, and controlled to prioritize testing of rays based on scan conversion status. Ray population can be controlled by feedback to any of scan conversion, and shading.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: August 23, 2016
    Assignee: Imagination Technologies Limited
    Inventors: John W. Howson, Luke Tilman Peterson
  • Publication number: 20150242990
    Abstract: Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays.
    Type: Application
    Filed: May 12, 2015
    Publication date: August 27, 2015
    Inventors: Luke Tilman Peterson, Ryan R. Salsbury, Sean Matthew Gies, Steven John Clohset
  • Patent number: 9030476
    Abstract: Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: Imagination Technologies, Limited
    Inventors: Luke Tilman Peterson, Ryan R. Salsbury, Sean Matthew Gies, Steven John Clohset