Patents by Inventor Lutz Keller

Lutz Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10488258
    Abstract: A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: November 26, 2019
    Assignee: SpectraSensors, Inc.
    Inventors: Lutz Keller, Alfred Feitisch, Peter Scott, Mathias Schrempel, Nathan St. John
  • Publication number: 20190162597
    Abstract: A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described.
    Type: Application
    Filed: September 23, 2014
    Publication date: May 30, 2019
    Inventors: Lutz Keller, Alfred Feitisch, Peter Scott, Mathias Schrempel, Nathan St. John
  • Patent number: 10156513
    Abstract: A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: December 18, 2018
    Assignee: SpectraSensors, Inc.
    Inventors: Peter Scott, Alfred Feitisch, Peter Dorn, Adam S. Chaimowitz, Hsu-Hung Huang, Mathias Schrempel, Lutz Keller
  • Publication number: 20160153890
    Abstract: A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
    Type: Application
    Filed: July 23, 2015
    Publication date: June 2, 2016
    Inventors: Peter Scott, Alfred Feitisch, Peter Dorn, Adam S. Chaimowitz, Hsu-Hung Huang, Mathias Schrempel, Lutz Keller
  • Publication number: 20160084710
    Abstract: A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: Lutz Keller, Alfred Feitisch, Peter Scott, Mathias Schrempel, Nathan St. John
  • Patent number: 9109951
    Abstract: A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 18, 2015
    Assignee: SpectraSensors, Inc.
    Inventors: Peter Scott, Alfred Feitisch, Peter Dorn, Adam S. Chaimowitz, Hsu-Hung Huang, Mathias Schrempel, Lutz Keller
  • Publication number: 20150124257
    Abstract: A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: SpectraSensors, Inc.
    Inventors: Peter Scott, Alfred Feitisch, Peter Dorn, Adam S. Chaimowitz, Hsu-Hung Huang, Mathias Schrempel, Lutz Keller
  • Patent number: 8953165
    Abstract: Light intensity data quantifying intensity of light generated by a light source and received at a detector during a validation mode of an absorption spectrometer can be compared with a stored data set representing at least one previous measurement in a validation mode of an analytical system. The validation mode can include causing the light to pass at least once through each of a zero gas and a reference gas contained within a validation cell and including a known amount of a target analyte. The zero gas can have at least one of known and negligible first light absorbance characteristics within a range of wavelengths produced by the light source. A validation failure can be determined to have occurred if the first light intensity data and the stored data set are out of agreement by more than a predefined threshold amount. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 10, 2015
    Assignee: SpectraSensors, Inc.
    Inventors: Alfred Feitisch, Lutz Keller, Xiang Liu, Mathias Schrempel, Keith Benjamin Helbley
  • Patent number: 8842282
    Abstract: A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 23, 2014
    Assignee: Spectrasensors, Inc.
    Inventors: Lutz Keller, Alfred Feitisch, Peter Scott, Mathias Schrempel, Nathan St. John
  • Publication number: 20140160474
    Abstract: A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Inventors: Lutz Keller, Alfred Feitisch, Peter Scott, Mathias Schrempel, Nathan St. John
  • Patent number: 8358417
    Abstract: A valid state of an analytical system that includes a light source and a detector can be verified by determining that deviation of first light intensity data quantifying a first intensity of light received at the detector from the light source after the light has passed at least once through each of a reference gas in a validation cell and a zero gas from a stored data set does not exceed a pre-defined threshold deviation. The stored data set can represent at least one previous measurement collected during a previous instrument validation process performed on the analytical system. The reference gas can include a known amount of an analyte. A concentration of the analyte in a sample gas can be determined by correcting second light intensity data quantifying a second intensity of the light received at the detector after the light passes at least once through each of the reference gas in the validation cell and a sample gas containing an unknown concentration of the analyte compound.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 22, 2013
    Assignee: SpectraSensors, Inc.
    Inventors: Alfred Feitisch, Lutz Keller, Xiang Liu, Mathias Schrempel, Keith Benjamin Helbley
  • Publication number: 20110299076
    Abstract: A valid state of an analytical system that includes a light source and a detector can be verified by determining that deviation of first light intensity data quantifying a first intensity of light received at the detector from the light source after the light has passed at least once through each of a reference gas in a validation cell and a zero gas from a stored data set does not exceed a pre-defined threshold deviation. The stored data set can represent at least one previous measurement collected during a previous instrument validation process performed on the analytical system. The reference gas can include a known amount of an analyte. A concentration of the analyte in a sample gas can be determined by correcting second light intensity data quantifying a second intensity of the light received at the detector after the light passes at least once through each of the reference gas in the validation cell and a sample gas containing an unknown concentration of the analyte compound.
    Type: Application
    Filed: February 14, 2011
    Publication date: December 8, 2011
    Inventors: ALFRED FEITISCH, Lutz Keller, Xiang Liu, Mathias Schrempel
  • Publication number: 20110299084
    Abstract: Light intensity data quantifying intensity of light generated by a light source and received at a detector during a validation mode of an absorption spectrometer can be compared with a stored data set representing at least one previous measurement in a validation mode of an analytical system. The validation mode can include causing the light to pass at least once through each of a zero gas and a reference gas contained within a validation cell and including a known amount of a target analyte. The zero gas can have at least one of known and negligible first light absorbance characteristics within a range of wavelengths produced by the light source. A validation failure can be determined to have occurred if the first light intensity data and the stored data set are out of agreement by more than a predefined threshold amount. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: February 14, 2011
    Publication date: December 8, 2011
    Inventors: ALFRED FEITISCH, Lutz Keller, Xiang Liu, Mathias Schrempel