Patents by Inventor M. Arif Zeeshan

M. Arif Zeeshan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956978
    Abstract: In one embodiment, a method of selectively forming a deposit may include providing a substrate, the substrate having a plurality of surface features, extending at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may include directing a reactive beam to the plurality of surface features, the reactive beam defining a non-zero angle of incidence with respect to a perpendicular to the plane of the substrate, wherein a seed layer is deposited on a first portion of the surface features, and is not deposited on a second portion of the surface features. The method may further include exposing the substrate to a reactive deposition process after the directing the reactive ion beam, wherein a deposit layer selectively grows over the seed layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese
  • Publication number: 20240040808
    Abstract: In one embodiment, a method of selectively forming a deposit may include providing a substrate, the substrate having a plurality of surface features, extending at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may include directing a reactive beam to the plurality of surface features, the reactive beam defining a non-zero angle of incidence with respect to a perpendicular to the plane of the substrate, wherein a seed layer is deposited on a first portion of the surface features, and is not deposited on a second portion of the surface features. The method may further include exposing the substrate to a reactive deposition process after the directing the reactive ion beam, wherein a deposit layer selectively grows over the seed layer.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese
  • Publication number: 20230369112
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Patent number: 11749564
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Publication number: 20220404115
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component). In some embodiments, a method may include providing a plurality of device structures extending from a base, each of the plurality of device structures including a first sidewall opposite a second sidewall and a top surface extending between the first and second sidewalls, and providing a seed layer over the plurality of device structures. The method may further include forming a dielectric layer along just the top surface and along an upper portion of the first and second sidewalls using an angled deposition delivered to the plurality of device structures at a non-zero angle of inclination relative to a perpendicular extending from an upper surface of the base, and forming a fill material within one or more trenches defined by the plurality of device structures.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Tristan Y. Ma, Kelvin Chan
  • Patent number: 11459652
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component). In some embodiments, a method may include providing a plurality of device structures extending from a base, each of the plurality of device structures including a first sidewall opposite a second sidewall and a top surface extending between the first and second sidewalls, and providing a seed layer over the plurality of device structures. The method may further include forming a dielectric layer along just the top surface and along an upper portion of the first and second sidewalls using an angled deposition delivered to the plurality of device structures at a non-zero angle of inclination relative to a perpendicular extending from an upper surface of the base, and forming a fill material within one or more trenches defined by the plurality of device structures.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Tristan Y. Ma, Kelvin Chan
  • Patent number: 11404314
    Abstract: Disclosed are approaches for forming a semiconductor device. In some embodiments, a method may include a method may include providing a semiconductor device including plurality of patterning structures over a device stack, each of the plurality of patterning structures including a first sidewall, a second sidewall, and an upper surface. The method may further include forming a seed layer along just the first sidewall and the upper surface of each of the plurality of patterning structures, forming a metal layer atop the seed layer, forming a fill material between each of the plurality of patterning structures, and removing the plurality of patterning structures.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 2, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sony Varghese, M. Arif Zeeshan, Shantanu Kallakuri, Kelvin Chan
  • Publication number: 20220119938
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component). In some embodiments, a method may include providing a plurality of device structures extending from a base, each of the plurality of device structures including a first sidewall opposite a second sidewall and a top surface extending between the first and second sidewalls, and providing a seed layer over the plurality of device structures. The method may further include forming a dielectric layer along just the top surface and along an upper portion of the first and second sidewalls using an angled deposition delivered to the plurality of device structures at a non-zero angle of inclination relative to a perpendicular extending from an upper surface of the base, and forming a fill material within one or more trenches defined by the plurality of device structures.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Tristan Y. Ma, Kelvin Chan
  • Publication number: 20220122883
    Abstract: Disclosed are approaches for forming a semiconductor device. In some embodiments, a method may include a method may include providing a semiconductor device including plurality of patterning structures over a device stack, each of the plurality of patterning structures including a first sidewall, a second sidewall, and an upper surface. The method may further include forming a seed layer along just the first sidewall and the upper surface of each of the plurality of patterning structures, forming a metal layer atop the seed layer, forming a fill material between each of the plurality of patterning structures, and removing the plurality of patterning structures.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sony Varghese, M. Arif Zeeshan, Shantanu Kallakuri, Kelvin Chan
  • Publication number: 20220119955
    Abstract: Embodiments of the present disclosure include positioning a mask over a substrate, wherein the mask has a planar surface separated from a top surface of the substrate by a mask distance, and wherein a mask opening is provided through the planar surface. The method may further include positioning a mask element across the mask opening, the mask element including one or more solid portions and one or more openings, and depositing, through the mask opening, a deposition material onto the substrate, wherein the deposition material has a variable profile as a result of the one or more solid portions and the one or more openings.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Shantanu Kallakuri, Joseph C. Olson
  • Publication number: 20220100078
    Abstract: Methods and devices for producing substrates with variable height features are provided. In one example, a proximity mask may include a plate positioned over a substrate, wherein at least a portion of the plate is separated from the substrate by a distance. The plate may include a first opening and a second opening, wherein the first opening is defined by a first perimeter having a first shape, wherein the second opening is defined by a second perimeter having a second shape, and wherein the first shape is different than the second shape.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Ross Bandy, Peter F. Kurunczi, Shantanu Kallakuri, Thomas Soldi, Joseph C. Olson
  • Publication number: 20220093458
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Publication number: 20220068923
    Abstract: In one embodiment, a method of selectively forming a deposit may include providing a substrate, the substrate having a plurality of surface features, extending at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may include directing a reactive beam to the plurality of surface features, the reactive beam defining a non-zero angle of incidence with respect to a perpendicular to the plane of the substrate, wherein a seed layer is deposited on a first portion of the surface features, and is not deposited on a second portion of the surface features. The method may further include exposing the substrate to a reactive deposition process after the directing the reactive ion beam, wherein a deposit layer selectively grows over the seed layer.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese