Patents by Inventor Mackenzie E. King

Mackenzie E. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8109130
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: February 7, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Publication number: 20090305427
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 10, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Frank Dimeo, JR., Philip S.H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 7475588
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: January 13, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawacz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 7435320
    Abstract: The present invention relates in general to real-time analysis of electrochemical deposition (ECD) metal plating solutions, for the purpose of reducing plating defects and achieving high quality metal deposition. The present invention provides various new electrochemical analytical cell designs for reducing cross-contamination and increasing analytical signal strength. The present invention also provides improved plating protocols for increasing potential signal strength and reducing the time required for each measurement cycle. Further, the present invention provides new methods and algorithms for simultaneously determining concentrations of suppressor, accelerator, and leveler in a sample ECD solution within three experimental runs.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 14, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, Mackenzie E. King, Weihua Wang, Glenn Tom, Jay Jung
  • Patent number: 7427344
    Abstract: The present invention relates to a method and apparatus for determining organic additive concentrations in a sample electrolytic solution, preferably a copper electroplating solution, by measuring the double layer capacitance of a measuring electrode in such sample solution. Specifically, the present invention utilizes the correlation between double layer capacitance and the organic additive concentration for concentration mapping, based on the double layer capacitance measured for the sample electrolytic solution.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: September 23, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, MacKenzie E. King
  • Patent number: 7296460
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 7157051
    Abstract: A method and system for analysis of additives in electrolysis plating solutions, using a flow management system that minimizes loss of plating solutions and decreases sampling time. The system includes at least one analysis chamber, a sampling duct connected to processing tool, a four-way valve positioned between the processing tool and the sampling duct, at least one carrier fluid duct connected to the analysis chamber, at least one actuatable multi-port valve that provides a transference platform between the sampling duct and the at least one carrier fluid duct, and a flow sensor connected to the sampling duct and positioned downstream from the at least one actuatable multi-port valve.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: January 2, 2007
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Mackenzie E. King, Thomas Chatterton, Richard Bhella
  • Patent number: 7141156
    Abstract: The present invention relates to a method for mathematically re-calibrating and adjusting an initial concentration analysis model that suffers from electrochemical measurement errors caused by surface state changes in the working/counter/reference electrode after extended usage. Specifically, such recalibration method reimburses long-term drift in the electrochemical measurements based on a single point testing.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: November 28, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, Mackenzie E. King, Glenn Tom, Steven Lurcott
  • Patent number: 7080545
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: July 25, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 6984299
    Abstract: The present invention relates to a method and apparatus for determining organic additive concentrations in a sample electrolytic solution, preferably a copper electroplating solution, by measuring the double layer capacitance of a measuring electrode in such sample solution. Specifically, the present invention utilizes the correlation between double layer capacitance and the organic additive concentration for concentration mapping, based on the double layer capacitance measured for the sample electrolytic solution.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: January 10, 2006
    Assignee: Advanced Technology Material, Inc.
    Inventors: Jianwen Han, Mackenzie E. King
  • Patent number: 6897960
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: May 24, 2005
    Inventors: Frank DiMeo, Jr., Mackenzie E. King
  • Patent number: 6844196
    Abstract: The present invention relates to antioxidant analysis for solder plating solutions, by using a complexing solution comprising a molybdenum compound, such as MoO2Cl2, to form a highly colored antioxidant-molybdenum complex, which can be detected and analyzed by UV-Vis spectroscopic, as a basis for concentration determination for the antioxidant.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 18, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Mackenzie E. King, Cory Schomburg, Monica K. Hilgarth
  • Publication number: 20040108224
    Abstract: The present invention relates to methods and apparatus for determining concentrations of various inorganic or organic components in solder plating solutions, which include titration or parallel titration methods, direct potentiometry methods, calibration methods, and/or UV-Vis absorption analysis.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 10, 2004
    Inventors: Peter M. Robertson, Mackenzie E. King, Monica K. Hilgarth, Cory Schomburg, Yuriy Tolmachev, Uwe Schoenrogge
  • Publication number: 20040074285
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Application
    Filed: October 17, 2002
    Publication date: April 22, 2004
    Inventors: Frank Dimeo, Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Publication number: 20040040842
    Abstract: The present invention relates to an electrochemical analytical apparatus for analyzing an electrochemical deposition solution, comprising a testing electrode, and a temperature detector attached thereto for monitoring temperature of said testing electrode. Preferably, such temperature detector is a resistance temperature detector.
    Type: Application
    Filed: September 3, 2002
    Publication date: March 4, 2004
    Inventors: Mackenzie E. King, John W. Staples, Joseph W. Evans, Daniel O. Clark, Peter M. Robertson, Thomas B. Chatterton, Thomas Hartford
  • Publication number: 20030143753
    Abstract: The present invention relates to antioxidant analysis for solder plating solutions, by using a complexing solution comprising a molybdenum compound, such as MoO2Cl2, to form a highly colored antioxidant-molybdenum complex, which can be detected and analyzed by UV-Vis spectroscopic, as a basis for concentration determination for the antioxidant.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 31, 2003
    Inventors: Mackenzie E. King, Cory Schomburg, Monica K. Hilgarth
  • Publication number: 20030127341
    Abstract: The present invention relates to methods for removing the matrix effects caused by variance in copper concentration and acidity during measurement of the organic additive concentration in a sample copper plating solution.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 10, 2003
    Inventors: Mackenzie E. King, Richard Bhella, Cory Schomburg, Peter Robertson
  • Publication number: 20030127324
    Abstract: The present invention relates to a process analyzer for analyzing composition of sample electrochemical deposition solutions, comprising at least one microelectrode having a radius of not more than about 5 &mgr;m. The process analyzer preferably comprises: (1) two or more independent analytical modules for analyzing fluid samples, (2) a primary manifold communicatively connected to the analytical modules for introducing fluid samples thereinto, and (3) a computational device communicatively associated with the analytical modules for colleting and processing analytical data therefrom, and therefore can be used to conduct automatic and simultaneous analysis of two or more sample solutions.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 10, 2003
    Inventors: Mackenzie E. King, John Staples
  • Publication number: 20020171839
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Application
    Filed: May 2, 2002
    Publication date: November 21, 2002
    Inventors: Frank DiMeo, Mackenzie E. King
  • Publication number: 20020154310
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Application
    Filed: January 22, 2002
    Publication date: October 24, 2002
    Inventors: Frank DiMeo, Mackenzie E. King