Patents by Inventor Madaiah Puttaraju

Madaiah Puttaraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220031731
    Abstract: The present disclosure provides compounds comprising oligonucleotides complementary to a portion of the LMNA gene. Such compounds are useful for modulating the expression of LMNA in a cell or animal, and in certain instances reducing the amount of progerin mRNA and/or progerin protein. Progerin mRNA results from aberrant splicing of LMNA and is translated to generate progerin protein. Accumulation of progerin protein causes Hutchinson-Gilford progeria syndrome (HOPS), a premature aging disease. In certain embodiments, hybridization of oligonucleotides complementary to a portion of the LMNA gene results in a decrease in the amount of progerin mRNA and/or progerin protein. In certain embodiments, oligonucleotides are used to treat Hutchinson-Gilford Progeria Syndrome.
    Type: Application
    Filed: September 20, 2019
    Publication date: February 3, 2022
    Applicants: Ionis Pharmaceuticals, Inc., Ionis Pharmaceuticals, Inc.
    Inventors: Priyam Singh, Frank Rigo, Tom Misteli, Madaiah Puttaraju
  • Patent number: 8883753
    Abstract: Methods and compositions for generating novel nucleic acid molecules through targeted spliceosome mediated RNA trans-splicing that result in expression of a apoAI protein, an apoAI variant, the preferred embodiment referred to herein as the apoAI Milano variant, a pre-pro-apoAI or an analog of apoAI. The methods and compositions include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA) capable of encoding apoAI, the apoAI Milano variant, or an analog of apoAI. The expression of this apoAI protein results in protection against vascular disorders resulting from plaque build up, i.e., atherosclerosis, strokes and heart attacks.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Virxsys Corporation
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano A. Garcia-Blanco, Gerard J. McGarrity, Gary F. Temple
  • Patent number: 8053232
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through targeted spliceosomal mediated RNA trans-splicing. The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with a SERPINA1 target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA). In particular, the PTMs of the present invention include those genetically engineered to interact with SERPINA1 target pre-mRNA so as to result in correction of SERPINA1 genetic defects responsible for AAT deficiency. The PTMs of the invention may also comprise sequences that are processed out of the PTM to yield duplex siRNA molecules directed specifically to mutant SERPIN A1 mRNAs. Such duplexed siRNAs are designed to reduce the accumulation of toxic AAT protein in liver cells.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: November 8, 2011
    Assignee: VIRxSYS Corporation
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano A. Garcia-Blanco, Gerard J. McGarrity, Gary F. Temple, Lloyd G. Mitchell, Colette Cote, S. Gary Mansfield
  • Publication number: 20110263015
    Abstract: The present invention describes the use of pre-trans-splicing molecules (PTMs) to reprogram human normal and diseased somatic cells into pluripotent stem cells using spliceosome-mediated RNA trans-splicing. More specifically, the present invention describes the use of the SMaRTâ„¢ technology to repair or reprogram the newly induced diseased pluripotent stem cells.
    Type: Application
    Filed: August 20, 2009
    Publication date: October 27, 2011
    Applicant: VIRXSYS CORPORATION
    Inventors: Jenice G. D'Costa, Laurent M. Humeau, Stephen Gary Mansfield, Madaiah Puttaraju, Nikolay Korokhov, Gerard J. McGarrity
  • Publication number: 20110244519
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through RNA trans-splicing that target a highly expressed pre-mRNA and contain the coding sequence for antibody polypeptide(s). The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with the target precursor messenger RNA molecule (target pre-mRNA) that is abundantly expressed or tumor specific and mediate a trans-splicing reaction resulting in the generation of novel chimeric RNA molecule (chimeric RNA) capable of encoding an antibody polypeptide. The invention provides for the in vivo production of chimeric RNA molecules that encode and result in the production of an antibody polypeptide that is therapeutically effective against, for example, infectious agents, cancer cells, transplantation antigens, rheumatoid arthritis, etc.
    Type: Application
    Filed: January 11, 2011
    Publication date: October 6, 2011
    Applicant: VIRxSYS Corporation
    Inventors: Gerard J. McGarrity, Mariano A. Garcia-Blanco, Madaiah Puttaraju
  • Patent number: 7968334
    Abstract: Methods and compositions for generating novel nucleic acid molecules through targeted spliceosome mediated RNA trans-splicing that result in expression of a apoAI protein, an apoAI variant, the preferred embodiment referred to herein as the apoAI Milano variant, a pre-pro-apoAI or an analogue of apoAI. The methods and compositions include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA) capable of encoding apoAI, the apoAI Milano variant, or an analogue of apoAI. The expression of this apoAI protein results in protection against vascular disorders resulting from plaque build up, i.e., atherosclerosis, strokes and heart attacks.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: June 28, 2011
    Assignee: VIRxSYS Corporation
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano A. Garcia-Blanco, Gerard J. McGarrity, Gary F. Temple
  • Patent number: 7879321
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through RNA trans-splicing that target a highly expressed pre-mRNA and contain the coding sequence for antibody polypeptide(s). The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with the target precursor messenger RNA molecule (target pre-mRNA) that is abundantly expressed or tumor specific and mediate a trans-splicing reaction resulting in the generation of novel chimeric RNA molecule (chimeric RNA) capable of encoding an antibody polypeptide. The invention provides for the in vivo production of chimeric RNA molecules that encode and result in the production of an antibody polypeptide that is therapeutically effective against, for example, infectious agents, cancer cells, transplantation antigens, rheumatoid arthritis, etc.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: February 1, 2011
    Assignee: VIRxSYS Corporation
    Inventors: Gerard J. McGarrity, Mariano A. Garcia-Blanco, Madaiah Puttaraju
  • Publication number: 20060246422
    Abstract: The molecules and methods of the present invention provide a means for in vivo production of a trans-spliced molecule in a selected subset of cells. The pre-trans-splicing molecules of the invention are substrates for a trans-splicing reaction between the pre-trans-splicing molecules and a pre-mRNA that is uniquely expressed in the specific target cells. The in vivo trans-splicing reaction provides a novel mRNA that is functional as mRNA or encodes a protein to be expressed in the target cells. The expression product of the mRNA is a protein of therapeutic value to the cell or host organism, a toxin that kills the specific cells or a novel protein not normally present in such cells. The invention further provides PTMs that have been genetically engineered for the identification of exon/intron boundaries of pre-mRNA molecules using an exon tagging method.
    Type: Application
    Filed: October 21, 2005
    Publication date: November 2, 2006
    Inventors: Lloyd Mitchell, Mariano Garcia-Blanco, Carl Baker, Madaiah Puttaraju
  • Publication number: 20060234247
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through targeted spliceosomal mediated RNA trans-splicing. The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with a SERPINA1 target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA). In particular, the PTMs of the present invention include those genetically engineered to interact with SERPINA1 target pre-mRNA so as to result in correction of SERPINA1 genetic defects responsible for AAT deficiency. The PTMs of the invention may also comprise sequences that are processed out of the PTM to yield duplex siRNA molecules directed specifically to mutant SERPIN A1 mRNAs. Such duplexed siRNAs are designed to reduce the accumulation of toxic AAT protein in liver cells.
    Type: Application
    Filed: January 21, 2005
    Publication date: October 19, 2006
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano Garcia-Blanco, Gerard McGarrity, Gary Temple, Lloyd Mitchell, Colette Cote, S. Mansfield
  • Publication number: 20060194317
    Abstract: Methods and compositions for generating novel nucleic acid molecules through targeted spliceosome mediated RNA trans-splicing that result in expression of a apoAI protein, an apoAI variant, the preferred embodiment referred to herein as the apoAI Milano variant, a pre-pro-apoAI or an analogue of apoAI. The methods and compositions include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA) capable of encoding apoAI, the apoAI Milano variant, or an analogue of apoAI. The expression of this apoAI protein results in protection against vascular disorders resulting from plaque build up, i.e., atherosclerosis, strokes and heart attacks.
    Type: Application
    Filed: May 31, 2005
    Publication date: August 31, 2006
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano Garcia-Blanco, Gerard McGarrity, Gary Temple
  • Publication number: 20060177933
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through targeted spliceosome mediated RNA trans-splicing that result in expression of an apoA-1 variant, the preferred embodiment referred to herein as the apoA-1 Milano variant. The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA) capable of encoding the apoA-1 Milano variant. The expression of this variant protein results in protection against vascular disorders resulting from plaque build up, i.e., strokes and heart attacks. In particular, the PTMs of the present invention include those genetically engineered to interact with the apoA-1 target pre-mRNA so as to result in expression of the apoA-1 Milano variant.
    Type: Application
    Filed: January 21, 2005
    Publication date: August 10, 2006
    Inventors: Madaiah Puttaraju, Edward Otto, Mariano Garcia-Blanco, Gerard McGarrity, Gary Temple
  • Publication number: 20060160182
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through RNA trans-splicing that target a highly expressed pre-mRNA and contain the coding sequence for antibody polypeptide(s). The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with the target precursor messenger RNA molecule (target pre-mRNA) that is abundantly expressed or tumor specific and mediate a trans-splicing reaction resulting in the generation of novel chimeric RNA molecule (chimeric RNA) capable of encoding an antibody polypeptide. The invention provides for the in vivo production of chimeric RNA molecules that encode and result in the production of an antibody polypeptide that is therapeutically effective against, for example, infectious agents, cancer cells, transplantation antigens, rheumatoid arthritis, etc.
    Type: Application
    Filed: October 7, 2005
    Publication date: July 20, 2006
    Inventors: Gerard McGarrity, Mariano Garcia-Blanco, Madaiah Puttaraju
  • Publication number: 20060154257
    Abstract: The present invention provides methods and compositions for rapid high capacity functional screening to identify optimal pre-trans-splicing molecules (PTMs). The compositions of the invention include PTM expression libraries capable of encoding candidate PTMs designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA). The candidate PTMs of the invention encode a portion of a first reporter molecule and may encode one or more other reporter molecules, which can be used to select for cells expressing optimal PTMs (efficient and specific). The compositions of the invention also include cells that express a target pre-mRNA encoding the remaining portion of the first reporter molecule.
    Type: Application
    Filed: July 26, 2004
    Publication date: July 13, 2006
    Inventors: Lloyd Mitchell, Madaiah Puttaraju, Mariano Garcia-Blanco, Edward Otto, Yanping Yang
  • Publication number: 20040248141
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through targeted spliceosomal mediated RNA trans-splicing. The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA). In particular, the PTMs of the present invention can be genetically engineered to interact with a specific target pre-mRNA expressed in cells of the skin so as to result in correction of genetic defects responsible for a variety of different skin disorders to encode a reporter molecule or protein that may have therapeutic benefit. The compositions of the invention further include recombinant vectors systems capable of expressing the PTMs of the invention and cells expressing said PTMs.
    Type: Application
    Filed: July 17, 2003
    Publication date: December 9, 2004
    Inventors: Lloyd G. Mitchell, Madaiah Puttaraju, Guenter Dallinger, Alfred Klausegger, Johann Bauer
  • Publication number: 20040214263
    Abstract: The invention provides molecules and methods for in vivo production of a trans-spliced molecule in selected cells. Pre-trans-splicing molecules of the invention are substrates for a trans-splicing reaction between the pre-trans-splicing molecules and a pre-mRNA which is uniquely expressed in the specific target cells. The in vivo trans-splicing reaction provides a novel mRNA which is functional as mRNA or encodes a protein to be expressed in the target cells. The mRNA expression product is a therapeutic protein, a toxin which causes killing of the specific cells, or a novel protein not normally present in such cells. The invention further provides genetically engineered PTMs for the identification of exon/intron boundaries of pre-mRNA molecules using an exon tagging method. The PTMs of the invention can also be designed to produce chimeric RNA encoding peptide affinity purification tags which can be used to purify and identify proteins expressed in a specific cell type.
    Type: Application
    Filed: March 20, 2002
    Publication date: October 28, 2004
    Inventors: Lloyd G. Mitchell, S. Gary Mansfield, Madaiah Puttaraju, Rebecca Clark, Mariano A. Garcia-Blanco
  • Publication number: 20040018622
    Abstract: The present invention provides methods and compositions for generating novel nucleic acid molecules through targeted spliceosomal mediated RNA trans-splicing. The compositions of the invention include pre-trans-splicing molecules (PTMs) designed to interact with a target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA). In particular, the PTMs of the present invention are genetically engineered to interact with a specific target pre-mRNA expressed in cells of the skin so as to result in correction of genetic defects responsible for a variety of different skin disorders. The compositions of the invention further include recombinant vectors systems capable of expressing the PTMs of the invention and cells expressing said PTMs.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 29, 2004
    Inventors: Lloyd G. Mitchell, Madaiah Puttaraju, Guenter Dallinger, Alfred Klausegger, Johann Bauer
  • Publication number: 20030204861
    Abstract: The present invention relates to development of an animal model system for in vivo testing of spliceosome-mediated RNA trans-splicing reactions. The present invention provides transgenic animals, and methods for generating such animals, that have been genetically engineered to expresses a target precursor messenger RNA molecule (target pre-mRNA) that serves as a substrate for a trans-splicing reaction. Specifically, the transgenic animals contain at least one transgene capable of expressing a target pre-mRNA molecule. The invention provides methods, based on utilization of the transgenic animals, for assessing the specificity and efficiency of a pre-trans-splicing molecule (PTM) designed to interact with a target pre-mRNA and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule. The present invention further relates to the transgenic expression of PTM molecules in animals to determine gene function, i.e, functional genetics.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Madaiah Puttaraju, Lloyd G. Mitchell, John F. Engelhardt, Xiaoming Liu
  • Publication number: 20030153054
    Abstract: The present invention provides methods and compositions for delivery of synthetic pre-trans-splicing molecules (synthetic PTMs) into a target cell. The compositions of the invention include synthetic pre-trans-splicing molecules (PTMs) with enhanced stability against chemical and enzymatic degradation. The synthetic PTMs are designed to interact with a natural target precursor messenger RNA molecule (target pre-mRNA) and mediate a trans-splicing reaction resulting in the generation of a novel chimeric RNA molecule (chimeric RNA).
    Type: Application
    Filed: February 12, 2002
    Publication date: August 14, 2003
    Inventors: Lloyd G. Mitchell, Mariano A. Garcia-Blanco, Madaiah Puttaraju
  • Publication number: 20030077754
    Abstract: The molecules and methods of the present invention provide a means for in vivo production of a trans-spliced molecule in a selected subset of cells. The pre-trans-splicing molecules of the invention are substrates for a trans-splicing reaction between the pre-trans-splicing molecules and a pre-mRNA which is uniquely expressed in the specific target cells. The in vivo trans-splicing reaction provides a novel mRNA which is functional as mRNA or encodes a protein to be expressed in the target cells. The expression product of the mRNA is a protein of therapeutic value to the cell or host organism a toxin which causes killing of the specific cells or a novel protein not normally present in such cells. The invention further provides PTMs that have been genetically engineered for the identification of exon/intron boundaries of pre-mRNA molecules using an exon tagging method.
    Type: Application
    Filed: January 8, 2001
    Publication date: April 24, 2003
    Inventors: Lloyd G. Mitchell, Mariano A. Garcia-Blanco, Madaiah Puttaraju, S. Gary Mansfield
  • Publication number: 20030027250
    Abstract: The molecules and methods of the present invention provide a means for in vivo production of a trans-spliced molecule in a selected subset of cells. The pre-trans-splicing molecules of the invention are substrates for a trans-splicing reaction between the pre-trans-splicing molecules and a pre-mRNA which is uniquely expressed in the specific target cells. The in vivo trans-splicing reaction provides a novel mRNA which is functional as mRNA or encodes a protein to be expressed in the target cells. The expression product of the mRNA is a protein of therapeutic value to the cell or host organism a toxin which causes killing of the specific cells or a novel protein not normally present in such cells. The invention further provides PTMs that have been genetically engineered for the identification of exon/intron boundaries of pre-mRNA molecules using an exon tagging method.
    Type: Application
    Filed: August 29, 2001
    Publication date: February 6, 2003
    Inventors: Lloyd G. Mitchell, Mariano A. Garcia-Blanco, Carl C. Baker, Madaiah Puttaraju