Patents by Inventor Maddalena Fanelli

Maddalena Fanelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9926496
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 27, 2018
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Strangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Lewis Litt
  • Patent number: 9695368
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: July 4, 2017
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Lewis Litt
  • Publication number: 20160194563
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Application
    Filed: February 11, 2016
    Publication date: July 7, 2016
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Lewis Litt
  • Publication number: 20140291204
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Application
    Filed: May 28, 2014
    Publication date: October 2, 2014
    Applicant: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Strangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Lewis Litt
  • Patent number: 8747656
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: June 10, 2014
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Dwayne Litt
  • Patent number: 8221528
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 17, 2012
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry
  • Patent number: 8122909
    Abstract: This invention relates to microchannel apparatus that includes microchannels with interior surface features for modifying flow; processes utilizing this microchannel architecture, and methods of making apparatus having these features.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: February 28, 2012
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Sean P. Fitzgerald, Ravi Arora, Kai Jarosch, Thomas D. Yuschak, Maddalena Fanelli, Tim Sullivan, Terry Mazanec
  • Patent number: 8029604
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Qiu Dongming, Laura J. Silva, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Steven Perry
  • Patent number: 7935734
    Abstract: The disclosed technology relates to a process for conducting a chemical reaction between at least one liquid reactant and at least one gaseous reactant in a process microchannel containing at least one catalyst, the catalyst comprising a solid phase catalyst or a homogeneous catalyst immobilized on a solid. In one embodiment, the process microchannel comprises a processing zone containing one or more structures for disrupting fluid flow and a reaction zone containing one or more structures for contacting and/or supporting the catalyst, the one or more structures for contacting and/or supporting the catalyst containing openings to permit the reactants to flow through the one or more structures and contact the catalyst.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 3, 2011
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, Timothy J. Sullivan, Terry Mazanec, Sean Patrick Fitzgerald, Maddalena Fanelli
  • Patent number: 7816411
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 19, 2010
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Micheal Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Publication number: 20100174124
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Application
    Filed: October 9, 2009
    Publication date: July 8, 2010
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Dwayne Litt
  • Publication number: 20100081726
    Abstract: The disclosed technology relates to a process for conducting a chemical reaction between at least one liquid reactant and at least one gaseous reactant in a process microchannel containing at least one catalyst, the catalyst comprising a solid phase catalyst or a homogeneous catalyst immobilized on a solid. In one embodiment, the process microchannel comprises a processing zone containing one or more structures for disrupting fluid flow and a reaction zone containing one or more structures for contacting and/or supporting the catalyst, the one or more structures for contacting and/or supporting the catalyst containing openings to permit the reactants to flow through the one or more structures and contact the catalyst.
    Type: Application
    Filed: June 30, 2006
    Publication date: April 1, 2010
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, Timothy J. Sullivan, Terry Mazanec, Sean Patrick Fitzgerald, Maddalena Fanelli
  • Publication number: 20100068366
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Micheal Jay Lamont, Dongming Qiu, Terrence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Publication number: 20100024645
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry
  • Patent number: 7622509
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Michael Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Publication number: 20090071335
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.
    Type: Application
    Filed: August 1, 2008
    Publication date: March 19, 2009
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Qiu Dongming, Laura J. Silva, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Steven Perry
  • Publication number: 20090043141
    Abstract: A microchannel apparatus comprising a conduit including a microchannel mixing section, a microchannel reaction section, a microchannel heat transfer section, and a separation section, where the microchannel mixing section includes direct injection inlets, where the microchannel mixing section is downstream from the reaction section, and where the separation section is downstream from the reaction section. Further exemplary embodiments are also disclosed.
    Type: Application
    Filed: May 30, 2008
    Publication date: February 12, 2009
    Inventors: Terry Mazanec, Wayne Simmons, John Brophy, Fred Pesa, Anna Lee Y. Tonkovich, Robert D. Litt, Dongming Qiu, Laura J. Silva, Micheal J. Lamont, Maddalena Fanelli
  • Publication number: 20070085227
    Abstract: The disclosed technology relates to a process for contacting a liquid phase and a second fluid phase, comprising: flowing the liquid phase and/or second fluid phase in a process microchannel in contact with surface features in the process microchannel, the contacting of the surface features with the liquid phase and/or second fluid phase imparting a disruptive flow to the liquid phase and/or second fluid phase; contacting the liquid phase with the second fluid phase in the process microchannel; and transferring mass from the liquid phase to the second fluid phase and/or from the second fluid phase to the liquid phase.
    Type: Application
    Filed: July 7, 2006
    Publication date: April 19, 2007
    Inventors: Anna Tonkovich, Maddalena Fanelli, Ravi Arora, Timothy Sullivan, Steven Perry, David Kuhlmann
  • Publication number: 20070017633
    Abstract: This invention relates to microchannel apparatus that includes microchannels with interior surface features for modifying flow; processes utilizing this microchannel architecture, and methods of making apparatus having these features.
    Type: Application
    Filed: March 23, 2006
    Publication date: January 25, 2007
    Inventors: Anna Tonkovich, Bin Yang, Steven Perry, Sean Fitzgerald, Ravi Arora, Kai Jarosch, Thomas Yuschak, Maddalena Fanelli, Tim Sullivan, Terry Masanec
  • Publication number: 20060073080
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 6, 2006
    Inventors: Anna Tonkovich, Laura Silva, David Hesse, Michael Marchiando, Micheal Lamont, Dongming Qiu, Terence Dritz, Kristina Pagnotto, Richard Stevenson, Steven Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Fitzgerald, Timothy Sullivan, Kai Tod Jarosch, Thomas Yuschak