Patents by Inventor Madhuri L. Nallabolu

Madhuri L. Nallabolu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110204432
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Applicant: NANOSYS, INC.
    Inventors: Jian Chen, Xiangfeng Duan, Chao Liu, Madhuri L. Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Patent number: 7968273
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Nanosys, Inc.
    Inventors: Jian Chen, Xiangfeng Duan, Chao Liu, Madhuri L. Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Publication number: 20100155786
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Application
    Filed: July 27, 2007
    Publication date: June 24, 2010
    Applicant: NANOSYS, Inc.
    Inventors: David L. Heald, Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, Madhuri L. Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Publication number: 20080150003
    Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide (Al2O3), hafnium oxide (HfO2), and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multistate (e.g., two, three or four bit) operation.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Jian Chen, Xiangfeng Duan, Karen Cruden, Chao Liu, Madhuri L. Nallabolu, Srikanth Ranganathan, Francisco Leon, J. Wallace Parce
  • Publication number: 20080150004
    Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide (Al2O3), hafnium oxide (HfO2), and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multistate (e.g., two, three or four bit) operation.
    Type: Application
    Filed: March 19, 2007
    Publication date: June 26, 2008
    Applicant: NANOSYS, INC.
    Inventors: Jian Chen, Xiangfeng Duan, Karen Cruden, Chao Liu, Madhuri L. Nallabolu, Srikanth Ranganathan, Francisco Leon, J. Wallace Parce