Patents by Inventor Mais Jebrail

Mais Jebrail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10695762
    Abstract: Described herein are digital microfluidic (DMF) devices and corresponding methods for managing reagent solution evaporation during a reaction. Reactions on the DMF devices described here are performed in an air or gas matrix. The DMF devices include a means for performing reactions at different temperatures. To address the issue of evaporation of the reaction droplet especially when the reaction is performed at higher temperatures, a means for introducing a replenishing droplet has been incorporated into the DMF device. A replenishing droplet is introduced every time when it has been determined that the reaction droplet has fallen below a threshold volume. Detection and monitoring of the reaction droplet may be through visual, optical, fluorescence, colorimetric, and/or electrical means.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: June 30, 2020
    Assignee: mirOculus Inc.
    Inventors: Mais Jebrail, Ronald Francis Renzi, Steven Branda
  • Publication number: 20180178217
    Abstract: Described herein are digital microfluidic (DMF) devices and corresponding methods for managing reagent solution evaporation during a reaction. Reactions on the DMF devices described here are performed in an air or gas matrix. The DMF devices include a means for performing reactions at different temperatures. To address the issue of evaporation of the reaction droplet especially when the reaction is performed at higher temperatures, a means for introducing a replenishing droplet has been incorporated into the DMF device. A replenishing droplet is introduced every time when it has been determined that the reaction droplet has fallen below a threshold volume. Detection and monitoring of the reaction droplet may be through visual, optical, fluorescence, colorimetric, and/or electrical means.
    Type: Application
    Filed: June 6, 2016
    Publication date: June 28, 2018
    Applicant: MIROCULUS INC.
    Inventors: Mais JEBRAIL, Ronald Francis RENZI, Steven BRANDA
  • Patent number: 9039973
    Abstract: The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: May 26, 2015
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Michael W. L. Watson, Mohamed Abdelgawad, Mais Jebrail, Hao Yang, Aaron R. Wheeler
  • Publication number: 20120083046
    Abstract: The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.
    Type: Application
    Filed: October 13, 2009
    Publication date: April 5, 2012
    Applicant: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Michael W. L. Watson, Mohamed Abdelgawad, Mais Jebrail, Hao Yang, Aaron R. Wheeler