Patents by Inventor Makhlouf Redjdal

Makhlouf Redjdal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9643891
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: May 9, 2017
    Assignee: AMASTAN TECHNOLOGIES LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20160228903
    Abstract: Systems, methods, and devices are disclosed for producing substantially uniform droplets. The system includes a fluid reservoir vessel defining a fluid reservoir, a separation membrane at one end of the fluid reservoir, at least one capillary channel at an opposite end of the fluid reservoir, a solution dispenser, and a piezo actuator in contact with a separation membrane. The separation membrane has a thickness greater than about 0.2 mm, and the solution dispenser maintains the fluid reservoir filled with fluid such that the fluid simultaneously contacts the separation membrane and the capillary channel. The solution dispenser maintains the fluid reservoir under pressure to create a fluid stream exiting the capillary. The piezo actuator is in contact with the separation membrane on a side opposite that in contact with the fluid, and the piezo actuator transfers a pressure wave through the fluid in the fluid reservoir to break up the fluid stream into uniform droplets.
    Type: Application
    Filed: April 13, 2016
    Publication date: August 11, 2016
    Inventors: Makhlouf Redjdal, Kamal Hadidi, Gregory Wrobel
  • Patent number: 9321071
    Abstract: There is disclosed a piezoelectric droplet maker that is driven at high frequency and energized with high power and high frequency Operational Amplifier (OP-AMP) electronics. The droplet maker implements a method of producing jets of uniform droplets of solution precursors (or any other homogeneous liquids). The formation of droplets results from stream break up due to the disturbance of liquid jets by the piezo actuator as they leave an orifice. This disturbance can be electronically tuned to produce uniform droplets with high repeatability. In another aspect, the droplet maker can be used to inject axially uniform diameter solution precursor droplets into process gas flow of a microwave plasma apparatus.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: April 26, 2016
    Assignees: AMASTAN TECHNOLOGIES LLC, UNIVERSITY OF CONNECTICUT
    Inventors: Eric Jordan, Makhlouf Redjdal, Kamal Hadidi
  • Patent number: 9259785
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 16, 2016
    Assignee: AMASTAN TECHNOLOGIES LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Patent number: 9242224
    Abstract: Disclosed herein is a method to produce multiphase composite materials directly from solution precursor droplets by a fast pyrolysis process using a microwave plasma embodiment containing a microwave generating source, a dielectric plasma torch, and a droplet maker. Here, using homogenous solution precursors, droplets are generated with a narrow size distribution, and are injected and introduced into the microwave plasma torch with generally uniform thermal path. The generally uniform thermal path in the torch is achieved by axial injection of droplets into an axisymmetric hot zone with laminar flows. Upon exposing to high temperature within the plasma with controlled residence time, the droplets are pyrolyzed and converted into particles by quenching with a controlled rate of the exhaust gas in a gas chamber. The particles generated have generally uniform sizes and uniform thermal history, and can be used for a variety of applications.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 26, 2016
    Assignee: AMASTAN TECHNOLOGIES LLC
    Inventors: Makhlouf Redjdal, Kamal Hadidi
  • Patent number: 9206085
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 8, 2015
    Assignee: AMASTAN TECHNOLOGIES LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20150231701
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20150126355
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Applicant: AMASTAN TECHNOLOGIES LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Patent number: 9023259
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Amastan Technologies LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Patent number: 8951496
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Amastan Technologies LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20140342093
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: Amastan LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20140217630
    Abstract: Disclosed herein is a method to produce multiphase composite materials directly from solution precursor droplets by a fast pyrolysis process using a microwave plasma embodiment containing a microwave generating source, a dielectric plasma torch, and a droplet maker. Here, using homogenous solution precursors, droplets are generated with a narrow size distribution, and are injected and introduced into the microwave plasma torch with generally uniform thermal path. The generally uniform thermal path in the torch is achieved by axial injection of droplets into an axisymmetric hot zone with laminar flows. Upon exposing to high temperature within the plasma with controlled residence time, the droplets are pyrolyzed and converted into particles by quenching with a controlled rate of the exhaust gas in a gas chamber. The particles generated have generally uniform sizes and uniform thermal history, and can be used for a variety of applications.
    Type: Application
    Filed: March 13, 2014
    Publication date: August 7, 2014
    Applicant: AMASTAN LLC
    Inventors: Makhlouf Redjdal, Kamal Hadidi
  • Publication number: 20140155249
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Inventors: Kamal HADIDI, Makhlouf REDJDAL
  • Publication number: 20140131906
    Abstract: A method for processing feed material to produce dense and spheroidal products is described. The feed material is comprised of powder particles from the spray-drying technique or solution precursor droplets from ceramic or metallic materials. The feed material is processed using plasma generated from a microwave. The microwave plasma torch employed is capable of generating laminar flow during processing which allows for the production of spheroidal particles with a homogenous materials distribution. This results in products having improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20130270261
    Abstract: A microwave plasma torch providing two laminar flows is described. Two laminar flows are created using a set of at least three concentric, staggered dielectric tubes connected to a pressurized gas source. An inner laminar flow entrains injected particles entering the plasma. An outer laminar flow creates a sheath around the plasma and prevents it from attaching to the walls of the plasma torch. The entry point of the gas source is designed to ensure laminar flow for both the entrainment of the particles and for the shielding of the plasma plume. The uniform processing conditions results in uniform particles and a homogenous materials distribution. This enables a final product with improved thermal properties, improved corrosion and wear resistance and a higher tolerance to interface stresses. The microwave plasma torch can be used for producing nanomaterial powder and for spray coating materials onto various substrates.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventors: Kamal Hadidi, Makhlouf Redjdal